t DRAESTANTIA PER SCIENT 44 ’

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

WEB SERVICES INTEGRATION ON THE FLY

by

Hoe Wai Leong

December 2008
Thesis Advisor: Don Brutzman
Co-Advisor: Curtis Blais
Second Reader: Don McGregor

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 2008 Master’s Thesis
4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS
Web Services Integration on the Fly

6. AUTHOR: Hoe Wai Leong

7. PERFORMING ORGANIZATION NAME AND ADDRESS 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT

In a net-centric environment, data, tools and people operate in a distributed network. A key research question is
whether a software framework can become so usable and intelligent that integration of web services can be done on-the-fly as
self-integration. Given data, software agents and supporting software infrastructure, web services integration on the fly means
that human coding is not required to integrate web services into a Web Service Architecture. This thesis explores a generic,
flexible, scalable, usable and intelligent web services architecture framework that enables sharing and integration of data and
tools on the fly. This software framework is a key enabler for systems of systems architecture in a net-centric environment. The
envisioned Web Service Architecture Intelligent Framework (WSAIF) is applied to the Modeling, Virtual Environments and
Simulation (MOVES) domain. Specifically, the framework is applied to provide the capability to search and retrieve
visualization models and their matching behavior models in a collaborative environment.

This thesis elaborates on the design, implementation, deployment and test results of web services for the Scenario
Authoring and Visualization for Advanced Graphical Environments (SAVAGE) archive, which is a set of web-based 3D
graphics models plus corresponding agent-behaviour models. SAVAGE web services can perform both “find” and “get”
operations for models in the archives. SAVAGE web services operations can be composed to form business processes. These
business processes can be expressed using modeling techniques such as Web Service Business Process Execution Language
(WSBPEL). Future capabilities include semantic activities using Web Ontology Language for Services (OWL-S). The study
and comparison of various modeling techniques that enable integration, orchestration and adaptation of composable web
services is mentioned. The design and implementation approach matches industry best practices for information architectures.
The modeling techniques are essential to and will eventually be used in WSAIF Orchestration and Adaptation components.
This thesis further explores how WSAIF software agents, modeling data and supporting software infrastructure can someday
enable web services integration on the fly and concludes with recommendations for future work.

14. SUBJECT TERMS 15. NUMBER OF
Service Oriented Architecture, Web Services Architecture, Semantic Web Services, Software Agents, | PAGES
X3D Graphics, SAVAGE Model Archives 214

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified §]V)
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

WEB SERVICES INTEGRATION ON THE FLY

Hoe Wai Leong
Civilian, DSO National Laboratories, Singapore
B.S., National University of Singapore, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS AND
SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL

December 2008
Author: Hoe Wai Leong
Approved by: Don Brutzman
Thesis Advisor
Curtis Blais
Co-Advisor

Don McGregor
Second Reader

Mathias Kolsch
Chair, MOVES Academic Committee

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

In a net-centric environment, data, tools and people operate in a distributed
network. A key research question is whether a software framework can become so usable
and intelligent that integration of web services can be done on-the-fly as self-integration.
Given data, software agents and supporting software infrastructure, web services
integration on the fly means that human coding is not required to integrate web services
into a Web Service Architecture. This thesis explores a generic, flexible, scalable, usable
and intelligent web services architecture framework that enables sharing and integration
of data and tools on the fly. This software framework is a key enabler for systems of
systems architecture in a net-centric environment. The envisioned Web Service
Architecture Intelligent Framework (WSAIF) is applied to the Modeling, Virtual
Environments and Simulation (MOVES) domain. Specifically, the framework is applied
to provide the capability to search and retrieve visualization models and their matching
behavior models in a collaborative environment.

This thesis elaborates on the design, implementation, deployment and test results
of web services for the Scenario Authoring and Visualization for Advanced Graphical
Environments (SAVAGE) archive, which is a set of web-based 3D graphics models plus
corresponding agent-behaviour models. SAVAGE web services can perform both “find”
and “get” operations for models in the archives. SAVAGE web services operations can
be composed to form business processes. These business processes can be expressed
using modeling techniques such as Web Service Business Process Execution Language
(WSBPEL). Future capabilities include semantic activities using Web Ontology
Language for Services (OWL-S). The study and comparison of various modeling
techniques that enable integration, orchestration and adaptation of composable web
services is mentioned. The design and implementation approach matches industry best
practices for information architectures. The modeling techniques are essential to and will
eventually be used in WSAIF Orchestration and Adaptation components. This thesis

further explores how WSAIF software agents, modeling data and supporting software
infrastructure can someday enable web services integration on the fly and concludes with

recommendations for future work.

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt bbbttt bbbt eneas 1
A OVERVIEW ..ottt sttt 1
B. PROBLEM DESCRIPTION. ..ottt 2
C. MOTIVATION ..ottt resneeneas 2
D APPROACH ... 3
E THESIS ORGANIZATIONooiiiiiiee ettt 4
BACKGROUND AND RELATED WORKccciiiiiiieit st 5
A INTRODUCGCTION. ...ttt ettt ene e 5
B SOFTWARE ARCHITECTURE ..ottt 5
1. Architecture QUAlITIEScceeviiiiie e 5
a. Reliability........cccoeiieiee 5
b. PerfOrMAaNCEcveiiiiiiee e 6
C. SCAlADITILY .o 6
d. SBCUNILY .ttt 6
e. Maintainabilitycccooeiiiiie e 7
2. Design Patterns and Object Oriented Programming 7
3. Model-Driven Architecture (MDA).......cccooeiiiie e 8
4, Unified Modeling Language (UML) ..o 8
5. Middleware and Interoperability...........cccccoviiiiiiiiccicecee 9
6. SOFEWAKE AQENTS ... e 10
C. SERVICE ORIENTED ARCHITECTURE (SOA)....ccccciiiiiiiiiiiieiene 11
D. WEB SERVICES ARCHITECTURE (WSA).....cccooiiieeiese e, 12
E. WEB SERVICES ... 14
F. SEMANTIC WEB SERVICES ARCHITECTURE (SWSA)......cccoceeunee. 14
G. SWSA AND SOFTWARE AGENTS INTEROPERABILITY ..o 14
H. SEMANTIC WEB TECHNOLOGIES.........ccootiiiiiieieeeee e 15
1. Resource Description Framework (RDF) and RDF Schema
(RDIFS) .ottt ettt sae st b nre s 15
2. Web Ontology Language (OWL)cccevieieiieieee e 16
a. OWL-FUIL .o 16
b. OWL-Description Logic (OWL-DL).......cccecovrvverveierierieanenn 17
C. OWL-LITE et 17
3. Rule Interchange Format (RIF) ... 17
I SEMANTIC WEB SERVICES........ccoiiieie s 17
1. Web Ontology Language for Services (OWL-S)......c..cceevvvveivennns 17
2. Web Service Modeling Ontology (WSMO)cccooviiiiiiienieiinnins 19
J. WEB SERVICES BUSINESS PROCESS EXECUTION LANGUAGE
(WSBPEL) ...ttt snenneas 22
K. WEB SERVICES CHOREOGRAPHY DESCRIPTION LANGUAGE
(VWS-CDLL) 1.ttt sttt sttt eneeneas 22
L. WEB SERVICES SECURITY (WS-SECURITY)....ccooovniiniiiniieeiein 23
M. VISUALIZATION AND BEHAVIOR MODELING.......cccccceviviiiiiirnnnn. 24

vii

1 Extensible 3D (X3D) GraphicCs.........cccccceviveveiiienieene e 24
2 Discrete Event Simulation (DES) ..o 25
3 SAVAGE Modeling and Analysis Language (SMAL).................... 26
4, Defense Model ArChiVEScoiiiiiiiiiiieeee e 27
N. NETBEANS 6.1 AND VERSION CONTROLccocoiiiiiiiinineeie 28
1 NetBeans Integrated Development Environment (IDE) 28
2 Forward and Reverse ENQINEEriNg.........cccoovvveiieieiiie i eie e 28
3 Implementation using NetBeans............cccocceveiinenene e 29
4. Subversion (SVN) for Version Control in NetBeans 29
O. PROTEGE AUTHORING TOOL FOR SEMANTIC WEB
DOCUMENTS....coiet bbbt 30
P. OTHER TOOLS AND SERVICES.........cccoiiiiiieieie e 31
Q. SUMMARY ..ttt bbb 31
ENVISIONED SOFTWARE ARCHITECTURE AND INTEGRATION............ 33
A. INTRODUCTION. ..ottt 33
B. STAKEHOLDERS ...t 33
C. SOFTWARE INTEGRATION TECHNOLOGY OVERVIEW................ 35
1. Age of Database SYStEMSoiviiiiiiiieieeesee e 35
2 Age Of NetWOrK SYStEMS......cccciveiicieieece e 37
3. Age Of DeSKIOP SYSTEIMS.......oiiiiiiiiiiie et 40
4. AQE OF INTEINEL......oiieicee e 40
5. Code Generators for Integration............ccceeeveieneniesie e 41
6. Current State of Integration Technologyccccoevvviviieiiervenene. 42
D. FUTURE INTEGRATION TECHNOLOGYcocoiiiiiieie e, 42
E. “SMART” INTEGRATIONooiiiiiiiieieie et 44
F. THE IMPLICATION TO SOA SOLUTIONS. ..o 45
1. SOA DeSigN PrinCIPIES.......coeiiiiiiiiiesieseseeee e 45
2. Envisioned WSAIF — A Realization of SOA........cccoceeiiiiiiininnnn, 47
G. ENVISIONED WEB SERVICES ARCHITECTURE INTELLIGENT
FRAMEWORK (WSAIF) ..ot 48
1. WSAIF High Level Functional and Architecture Requirements..48
2. WSAIF COMPONENTS....cciiiiiiiiieiiiie i 50
H. SUMMARY .ttt e ettt r e ne e enes 53
SAVAGE WEB SERVICES........cccot ittt 55
A INTRODUCTION. ..ottt 55
B. USE CASES ...ttt bbb 55
1. findX3DModel Web Method Use Case Specification 56
2. getX3DModel Web Method Use Case Specification 56
3. findDESModel Web Method Use Case Specification 56
4, getDESModel Web Method Use Case Specification 57
C. DESIGN CONSIDERATIONS ..ottt 57
D. IMPLEMENTATION PROCESS........cocot it 58
E. DESIGN COMPONENTS......ctiiiiiieie sttt 64
F. DETAILED DESIGN ...ccooiiiiiiiiee e 65
1. UML Class DIaQIramccooueierierineniesieseseeeeie e 65

viii

2. UML Sequence DIagramccceieeieeiesieenesieseese e sie e seesseaneens 68

3. SAVAGE WSDL ..ottt 72
G. RESOURCES AUTOGENERATED BY NETBEANS AND JAX-WS....76
H. EXTENDING SAVAGE WEB SERVICES ... 76
I SUMMARY bbbt 77
V. IMPLEMENTATION, DEPLOYMENT AND RESULTS........ccociiiiieiieeciee 79
A. INTRODUCTION. ..ottt 79
B. IMPLEMENTATION SETUP ..o 79
C. DEPLOYMENT ...ttt bbb 86
D. TEST CLIENT SET UP .ot 87
E. TEST RESULTS ..ottt 91
a. findX3DModel Webmethod ... 91
b. getX3DModel Webmethodcccoovviiiieiiiiecee e, 93
C. findDESModel Webmethodccooeiiniiiiiiiieiece e 94
d. getDESModel Webmethod..........ccceovvieiveie i 95
F. SUMMARY et 97
VI. WSAIF ORCHESTRATION AND ADAPTATIONccccoiiiiiiiieiene e 99
A. INTRODUGCTION......eiiiiiit it ses s 99
B. WS ORCHESTRATION SCENARIO FOR SAVAGE WEB
SERVICES.......o oottt re s 99
C. SAVAGE WS ORCHESTRATION AND ADAPTATION USING
WWSBPEL ...t 100
D. SAVAGE WS ORCHESTRATION AND ADAPTATION USING
OWVL-S e e e e e a e e e e nraeeans 104
E COMPARISON BETWEEN WSBPEL AND OWL-S.........ccoccviiinnnnnn. 107
F COMPARISON BETWEEN WSMO AND OWL-Sccocvviiiiiiieeiieens 107
G WSAIF SOFTWARE AGENTS+DATA=WEB SERVICES
INTEGRATION ON THE FLY otiiiiiiieceee e 109
H. SUMMARY ettt ee e e e e e e e e nnaee e 110
VII. CONCLUSIONS AND FUTURE WORKcccoiiiiiiiiniciee e 111
A. CONCLUSIONS ...ttt a e nnae e 111
B. RECOMMENDATIONS FOR FUTURE WORK.......cccccovciiiieniiisine 111
APPENDIX A. SAVAGE WEB SERVICES SOURCE CODE.........ccccceviieiiieeiieeeien, 113
1. WSMETHODS CLASSES ..ot 113
a. X3DWEDSEIVICE.JAVA.......eeuveniieeii it 113
b. DESWEDSEIVICE.JAVA.......ceeiveeieciiecii e 114
2. WSCONTROLLER CLASSESco oot 116
a. WSSHIAtegY.JAVA ..c.vecvveiieiiecie e 116
b. X3DFINASIrategy.java........ccocererererieieieiesesee s 117
C. X3DGEtStrategy.Java......ccccverveeeeiieiieeie e e 120
d. DESFINASIrategy.javacccoveieieiieieieniesie e 121
e. DESGEtStrategy.java........ccccveveeeeieeie e 124
f. WSSINGIEION.JAVAcvveiieiiiiiee e 125
g. WSULHILY.JAVA.....ecviciccic e 127

IX

3. WSMODEL CLASSES ... 128

a. WSCatalogReader.javac.ccooveeeiieienienieneee e 128

b. X3DFINdReSUItENLItY.JaVva.......ccceevveireriecieceee e 130

C. DESFINARESUItENTItY.JaVa ...cveveeiiiieiieieee e 130

d. Savage Catalog.......ccerviiereeii e 131

4, GENERATED RESOURCES. ...ttt 131
a. FindX3DModel.java.........cccccooevieiiie e 131

b FindX3DModelResponse.java.........ccccovverereeneenieseenieenenn 132

c GetX3DMOdelJava........ccccvveiieeieiiesir e 133

d GetX3DMOodelRESPONSE.JAVAveveeiieieeiie e 133

e FINADESMOELJaVvacccoviiecieie e 134

f. FINdDESMOdeIRESPONSE.JAVA......cvereeriieieiiieniieie e 135

g GetDESModel.java.........cccccvevviiieiieiicc e 136

h GetDESModelRespoNnse.javaccooveerernieeniesie e 136

I. X3DWebServiceService.wsdlccccoovviiininiieniien, 137

J. X3DWebServiceService_schemal.xsd.........ccccccoverveervnnnnne. 138

k. DESWebServiceService.wsdl ..o, 139

l. DESWebServiceService_schemal.xsdccccovvveivinnnnnnn 140

5. JSP CLIENT -ttt 141
a. (1016 [G 1] TSRS 141

b. SavageWSClentServIet.jsp ... 142

APPENDIX B. MEDIATION FOR SAVAGE WEB SERVICES............ccoceviiiiiiee, 145
1. OWL-S FOR SAVAGE COMPOSITE PROCESS.cccccoviiiiiiiinns 145
a. SavageOWLSSematicWS.oWlccocveviiiiiiiee e 145

b. X3DDESDECISION.OWI ...t 150

C. FINAX3DMOdel.OWIccviiii e 153

d. getX3DMOdel.OWl.........cccoeeie 156

e. FINADESMOUEL.OWI ..ot 158

f. getDESMOAEL.OWL.......c.ooiiiiiiieee e 160

2. WSBPEL FOR SAVAGE COMPOSITE PROCESS...........ccocvviiniiinnns 163
a. COMPOSItEPTOCESS.DPEL.....oceeiii 163

b. DESWebServiceServiceWrapper.wsdl..........c.ccccevveiverieennenn 167

C. SavageBpelX3DDESSeqComposite.wsdlccoccvvvennneee 167

d. SavageBpelX3DSeq.wsdlccceeveiieiiiieieece e 169

e. SavageGetX3DDESDeCISION. WScoovvverereninienieien 170

f. X3DWebServiceServiceWrapper.wsdl...........cccooevveiieernenne. 171

g. transformX3DUIILISt.XS]c..ooviiiiiiiic 172

APPENDIX C. RETRIEVE EXAMPLES ..o 173
1. SAVAGE WEB SERVICES SOURCE CODEcccoeviieevieeviee e 173
2. SAVAGE WEB SERVICES UML DIAGRAMS.cccoiiiiiiiinieniaianns 173
3. JSP CLIENT DEMO URL.....ooiiiii et 173
APPENDIX D. PRESENTATION SLIDESETccviiiiiiieieee e 175
LIST OF REFERENCQGES.o oottt 181

INITIAL DISTRIBUTION LIST

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.
Figure 19.

Figure 20.
Figure 21.

LIST OF FIGURES

Four classifications of middleware technologies (From Gorton, 2006). 9
Web Services Architecture consists of service broker, service requester
AN SEIVICE PrOVIAETccviiiie et 12

The architecture of AgentWeb Gateway middleware which contains
search query converter, service description converter and communication
protocol converter. (From Shafiq et at, 2006).........ccccceeveriveresiniieie e 15
RDF subject-predicate-object model that make assertions about a resource...16
OWL ontology for OWL-S. The class Service presents ServiceProfile, is
describedby ServiceModel, and supports ServiceGrounding (From Martin

BL AL, 2004). ..o s 18
Components of ServiceModel in OWL-S.........ccccoooieiiiiinienie e 18
Components of Process Model which is part of ServiceModel....................... 19
WSMX is a software architecture that enables creation and execution of

semantic web services base on WSMO (From Haller et al., 2005).................. 21
Example of X3D visualization model.............ccoooeiiiiiiiniiii e 25

VISKIT event graph editor is used to create event graphs. VISKIT
autogenerates java source code and XML representation from the event

0121 0] 1SRRI 26
SMAL documentation on SAVAGE website
(https://savage.nps.edu/Savage/Tools/SMAL/docs/SavageModelingAnalys
isLanguagel.0/Small.0.ntml). ..o 27
An example of GeoServer diSplay.cccocveveiieeiieeieiie e 31
Three stakeholders for business knowledge and data (From Hammer and
Timmerman, 2008).ccoviiiiieiiee e 34
Heterogeneous DBMS enables hierarchical, network and relational
databases to work together (From Hammer and Timmerman, 2008).............. 36

Code generators for database takes in schema for source database, schema
for target relational database and control file. The output is source code
(From Hammer and Timmerman, 2008)..........cccccervririirnienie e 37
ETL architecture diagram. The deployment Engine could be a separate
physical machine or running on the same machine (From Hammer and

Timmerman, 2008).ccoviiiiieiiee e 38
Standards-based adapters provide access to multiple sources by using

standards-based API (From Hammer and Timmerman, 2008)..........c...c..c...... 40
There are eight categories of SOA design principles (From Erl, 2008). 47
Semantic web service architecture high level functional and architecture

requirements (From Burstein et al., 2005).........cccoooveriiiiniieninin e 50
The envisioned WSAIF and its architecture Components............c.cceecvervreenne. 53

SAVAGE web services use case diagram in UML shows four use cases.
The user uses the client to invoke findX3DModel, getX3DModel,
findDESModel and getDESModel web methods.ccccovevveieiicciccece, 55

Xiii

Figure 22.

Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42,
Figure 43.
Figure 44.
Figure 45.
Figure 46.

Figure 47.

Reverse engineering leverages available code and generates UML
components. NetBeans and JAX-WS auto-generate WSDL, schema and
Java classes for the web methods...........ccooeiriiiiiien 59
Forward engineering using NetBeans provides the capability for NetBeans
to auto-generate classes, attributes and methods (without business logic

implementation) from UML diagrams...........cccocevviiieneerneie e 60
Forward engineering using NetBeans, with WSDL configured separately
and imported iNt0 NEtBEANS..........cccveiiee e 62
Reverse engineering using NetBeans, with WSDL configured separately
and imported iNt0 NEtBEANS..........c.ccveiieeieeee e 63
SAVAGE web services component diagram in UML. The components are
the realization Of the USE CASES.ccoviiriiiiese s 64
SAVAGE web services classes implemented in WSController component.
Class diagram iN UML.cccoviiiiiie e 65
SAVAGE web services classes implemented in the WSModel component.
Class diagram iN UML.ccocviioiiie e 67
SAVAGE web services classes implemented in X3DWSMethod and
DESWSMethod components. Class diagram in UML..........cccccceevvvievieieennene, 68
SAVAGE web services sequence diagram in UML for findX3DModel web
METNOM. ...t bbb 69
SAVAGE web services sequence diagram in UML for getX3DModel web
METNOM. ...t bbbt 70
SAVAGE web services sequence diagram in UML for findDESModel web
METNOM. ...t 71
SAVAGE web services sequence diagram in UML for getDESModel web
METNOM. ... e b bbb 72
Test web service using NetBeans.cccccveveiveiiiiie i 73
Web browser displays hyperlink to the X3DWebService WSDL file.............. 73
WSDL file that describes X3DWEDSEIVICE.ccuvvriiieiirene e 74
WSDL file that describes DESWEDSEIVICE.cccvvveriereiie e 75
View Tomcat application server log in command prompt...........cccccecvevvernenee. 80
Manage window services panel shows name, description, status, startup
type and log on id of WINAOW SEIVICES.........cccvveiieiieiieie e 81
Create web service using NetBeans web service wizard.cccccceeeveienieennnns 82

NetBeans web service design view is used to add web service operations.83
NetBeans project view gives a good overview of projects, software

components, library, configuration files and source code.cccccvevveinennene 83
Undeploy and deploy web services using NetBeans.cccocevvivieiverennnnnn 84
Test web services in NetBeans.ccuvvviieie i 85
WSDL file that describes X3DWEeDSEIVICE.ccceeriieiviii e 86
SAVAGE web services deployment diagram in UML. Web services are

deployed in SAVAGE Tomcat Web Application Server.ccccocevvnvnnne. 87
SAVAGE web services JSP test page. The user selects the web method,

keys in parameters and clicks “Invoke Web Service".cccoevcviieiieieenne 88

Xiv

Figure 48.

Figure 49.
Figure 50.

Figure 51.

Figure 52.

Figure 53.
Figure 54.

Figure 55.
Figure 56.

Figure 57.
Figure 58.

Figure 59.
Figure 60.

Figure 61.

Figure 62.

Figure 63.
Figure 64.

Figure 65.

JSP test page that contains hyperlink to SAVAGE web service invocation

(=TS U | R 89
Creating web services client in NetBeans...........ccooveveieniiiiiin i 90
Web service client wizard is used to create the web service client that

facilitates connectivity to SAVAGE web services in NetBeans...................... 90

Web services client established in NetBeans. Web service references
contain web service client objects which can be connected to a web

=] Y7o TSR 91
Source code that invokes findX3DModel web method in Java client main
(02 TSRS 92
Return result for FindX3DModel in XML.c.cooviiiiiiiiiieeee e 92
Source code that invokes getX3DModel web method in java client main
(02 T SRR UP USRS 93
Returned X3D model for getX3DModel web method. The X3D model is in
XML and is displayed by an X3D-compatible VIEWEr.ccccevvriinieiennnns 94
Source code that invokes findDESModel web method in java client main
(02 T SRR UP USRS 95
Return result for findDESModel web method in XML.........cccccoevvvveieiiennenn, 95
Source code that invokes getDESModel web method in java client main
(02 TSR PSSRRS 96
Return result for getDESModel web method in XML.ccccoooviiiiiiinieenene 97
SAVAGE WSBPEL composite process in NetBeans design view. The
composite process includes SAVAGE web services methods. 100

WSBPEL mapper view in NetBeans. The mapper creates WSBPEL assign
activity which maps/copies the output parameter/variable of one web
method to the input parameter of another web method.cccoeeveienee 101
WSBPEL NetBeans mapper view with doXSLTransform.
doXSLTransform defines adaptation rules that resolve syntactic or/and

semantic mismatches between two parameters...........ccceceeveieeveeiesieeseennens 102
Protégé OWL-S editor can be used to describe semantic web services in
(@ 1YV S S OSSPSR 104
Graph overview of SAVAGE OWL-S service profiles, processes and
groundings iN PrOtEOE.ccvoieiieie et 105
SAVAGE OWL-S composite process constructed using the Protégé
OWL-S EAIION ...ttt ettt eneas 106

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

LIST OF TABLES

Table 1. Comparison between WSA styles base on architecture quality properties
(From Wu and Chang, 2005).cccciueieeieiierreie e se e see e e see e e 13

Table 2. Conceptual comparison between OWL-S and WSMO (From Lara et al.,
2004). e e e ettt et e atenrearearaenes 109

XVii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

ACL
Al

API
ASP
AT/FP
AUV
CWM
CORBA
COTS
DAML-S
DES
DF
DoD
DoDAF
DOM
EA

EAI
ECM
EDOC
Ell
ESSI

ETL

LIST OF ABBREVIATIONS

Agent Communication Language

Artificial Intelligence

Application Programming Interface
Application Service Provider

Anti-Terrorism Force Protection
Autonomous Underwater Vehicle

Common Warehouse Metamodel

Common Object Request Broker Architecture
Commercial Off-The-Shelf

DARPA Agent Markup Language for Services
Discrete Event Simulation

Directory Facilitator

Department of Defense

Department of Defense Architecture Framework
Document Object Model

Enterprise Architecture

Enterprise Application Integration

Enterprise Content Management

Enterprise Distributed Object Computing
Enterprise Information Integration

European Semantic Systems Initiative
Extract, Transform and Load

Xix

EXI

FIPA

GIS

GML

GUI

HTTP

IDE

JAAS

JAXB

JAX-WS

JDK

JSP

MDA

MOF

MOVES

MVC

OASIS

ODBC

OMG

OOP

OWL

Efficient XML Interchange

Foundation of Intelligent Physical Agents
Geographic Information System

Geography Markup Language

Graphical User Interface

Hypertext Transfer Protocol

Integrated Development Environment

Internet Explorer

Information Technology

Java Authentication and Authorization Service
Java Architecture for XML Bindings

Java API for XML Web Services

Java Development Kit

Java Servlet Page

Model-Driven Architecture

Meta-Object Facility

Modeling, Simulation and Virtual Environment
Model-View-Controller

Organization for the Advancement of Structured Information
Standards

Open Database Connectivity

Object Management Group

Object Oriented Programming

Web Ontology Language
XX

OWL-DL
OWL-S
PCP
PDDL
P2P
QoS
RAHS
RDF
RDFS
RIF
SAML

SAVAGE

SEFAR
SFTP
SMAL
SMP
SOA
SOAP
SPEM
SQL
SSL
SSO

SVN

Web Ontology Language-Description Logic
Web Ontology Language for Services
Parameter Constraints Pattern

Planning Domain Definition Language
Peer-to-Peer

Quality of Service

Risk Assessment and Horizon Scanning
Resource Description Framework

Resource Description Framework Schema
Rule Interchange Format

Security Assertion Markup Language

Scenario Authoring and Visualization for Advanced Graphical

Environment

Service Enabled Fusion Architecture Reusable

Secure File Transfer Protocol

SAVAGE Modeling and Analysis Language
Signature Mismatch Pattern

Service Oriented Architecture

Simple Object Access Protocol

Software Process Engineering Metamodel
Structured Query Language

Secure Socket Layer

Single Sign-On

Subversion

XXi

SWSA
UDDI
UML
URI

URL
VRML
WES
WEFS-T
WMS
WorkSCo
WSA
WSAIF
WSBPEL
WS-CDL
WSDL
WSML
WSMO
WSMX
W3C
XACML
X-KISS
XKMS
X-KRSS

XMl

Semantic Web Services Architecture

Universal Description, Discovery and Integration
Unified Modeling Language

Uniform Resource Identifier

Unique Resource Locator

Virtual Reality Modeling Language

Web Feature Service

Web Map Service-Transactional

Web Map Service

Workflow with Separation of Concerns

Web Service Architecture

Web Services Architecture Intelligent Framework
Web Services Business Process Execution Language
Web Services Choreography Description Language
Web Services Description Language

Web Service Modeling Language

Web Service Modeling Ontology

Web Service Modeling eXecution environment
World-Wide Web Consortium

XML Access Control Markup Language

XML Key Information Service Specification
XML Key Management Specification

XML Key Registration Service Specification

XML Metadata Interchange

XXii

XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformation

X3D Extensible 3D

xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

XXiv

ACKNOWLEDGMENTS

Special thanks to Associate Professor Don Brutzman for advising and
encouraging me to work on such an interesting research topic. | want to thank my co-
advisor Mr. Curt Blais and second reader Mr. Don McGregor for giving me professional
advice on the subject. Most importantly, | thank my wife Mathitla Tan for her patience

and support.

XXV

THIS PAGE INTENTIONALLY LEFT BLANK

XXVi

I. INTRODUCTION

A. OVERVIEW

Service Oriented Architecture (SOA) is a new trend in software architecture and
integration. SOA is a style of architecture, where existing or new functionalities are
packaged as services. These services communicate with each other by passing data or by
coordinating an activity between one or more services. Such an architecture approach is
an enabler for systems of systems architectures where data, tools and people operate in a
multi-agency, hierarchical and collaborative environment. Web Services Architecture
(WSA) is an example implementation of SOA. With this implementation, business
modules are implemented and deployed as web services using Hypertext Transfer
Protocol (HTTP) invocations enabled via Simple Object Access Protocol (SOAP)
bindings. Web Services Description Language (WSDL) is the World-Wide Web
Consortium (W3C) standard to define Web Services in XML. Applying these techniques,
the new generation of software integration strategies can be more flexible, and integration

solutions can be platform and language independent.

Software integration has been governed by framework standardization to help
ensure interoperability. The role of software frameworks is to mediate and coordinate
multiple functions. The essential operational requirements for software frameworks are
uncompromising reliability, acceptable performance and perhaps some level of design
consideration for maintainability and scalability. In other words, robustness is the key for
what can be defined as a “good” software framework. The same methodology applies to
software frameworks that work with WSA. An example state-of-the-art, web-service
based architecture framework is Service Enabled Fusion Architecture Reusable (SEFAR).
SEFAR is developed by DSO National Laboratories, Singapore. SEFAR enables
orchestration of web services on-the-fly by end users. It also supports sharing of data and
tools in a multi-agency environment. The architecture framework is tested and used in the
Risk Assessment and Horizon Scanning (RAHS) system deployed in 2007 (Foo et al.,
2007). The SEFAR architecture framework as implemented has proven itself to be robust

and flexible.

B. PROBLEM DESCRIPTION

Typically, in order for a web service to be integrated with SEFAR,
implementation may vary from two weeks to three months of engineering effort. This
depends on the type of web services and the mediation and translation logic the engineer
needs to “hard code” into the service-associated software agents in the SEFAR
orchestration framework. This engineering step needs to be done in order for different
web services to be composed together. Thus, a key research question is whether the
framework might become so usable and intelligent that integration of web services can be
done on-the-fly as self-integration. Given data, software agents and supporting software
infrastructure, web services integration on the fly means that coding is not required to

integrate web services into a Web Service Architecture.

C. MOTIVATION

WSDL is a XML-based language that provides a model to describle web services.
Information about web services’ operations, bindings and addresses is described in
WSDL.

There are limitations on the amount of information that WSDL can present to
users of web services. As such, using WSDL alone, users do not have clarity on the
parameters’ and result’s format and meaning. There is a need for more expressive
representations of web services; hence, the motivation for more expressive modeling
concepts and implementation such as semantic web services (one example is Web
Ontology Language for Services (OWL-S)) and Web Services Business Process
Execution Language (WSBPEL).

With advanced modeling techniques such as OWL-S and WSBPEL, the
relationship between the services and the relationship between information are made
explicit. This increases the effectiveness of equipping new users with better business and
technical understanding about the web services and how they fit into the overall business
architecture. The benefit to users is that they need less time to understand how each web

service works, and how a group of them might works together.

A generic and flexible framework which incorporates the above-mentioned
capabilities will likely reduce the cost of maintaining the software framework in a
heterogeneous network where scalability and adaptability are the key considerations. The
software framework provides some level of automation within a run-time environment.
Hence, this approach will enable web services invocation, mediation and monitoring.
This reduces memory and programmer’s attention required to perform low-level and
mundane tasks. The benefit to users is that they can manage the web services more
efficiently, and are thus able to better focus on strategic business process considerations

and decisions.

Business rules, logic and the constraints of how business components (represented
as web services) work with each other can be made explicit and captured in the
architecture framework. This information becomes the basis for software agents to
perform more intelligent data analysis. This means that technology can become more
effective in searching, filtering, interpreting, categorizing and prioritizing right
information (e.g. matching web services) for users. Likewise, users are able to perform
better as they work with applications facilitated by a more usable and intelligent

architecture.

Most importantly, these complex models and business rules of web services can
be shared within a net-centric environment. This means that users within the network are

well supported by a rich knowledge base.

To the managers, the goals of a usable and intelligent architecture are to increase
users’ productivity, to reduce cost of operation, to minimize cost of maintenance, and to

achieve higher service levels.

D. APPROACH

Using state of the art software engineering practices and SOA-based open
standards (e.g. OWL-S), this thesis explores a generic, flexible, scalable, usable and
intelligent Web Services Architecture Intelligent Framework (WSAIF). These concepts
are applied to the Modeling, Simulation and Virtual Environment (MOVES) domain. The

framework contains software agents that automatically interpret and execute semantic

web services and orchestration workflows. WSAIF will enable MOVES visualization and
behavior models such as Extensible 3D (X3D) Graphics and Discrete Event Simulation
(DES) files to be discoverable, sharable, composable and self-integrating using web

services in the SOA environment.

E. THESIS ORGANIZATION

Chapter Il addresses background work. Chapter I11 elaborates on the envisioned
WSAIF. Chapter 1V specifies Savage web services which are the fundamental building
blocks of web services architecture for the MOVES domain. Chapter V presents the
implementation and test results for Savage web services. Chapter V1 elaborates on the
various modeling techniques to integrate, orchestrate and adapt a composite web services
process. The comparison between the modeling techniques is also discussed. These
modeling techniques will be used in WSAIF Orchestration and Adaptation components.
It further explains how WSAIF software agents and modeling data can enable web
services integration on the fly. The final chapter presents conclusions and

recommendations for future work.

Il. BACKGROUND AND RELATED WORK

A. INTRODUCTION

A good understanding of the many related disciplines affecting this work aids in
better understanding of the problem. Furthermore, this forms the basis for developing
design strategies to realize the envisioned architecture. The section on software
architecture elaborates on the influencing architecture qualities, state-of-the-art design
strategies, intelligent agents and integration technologies. Amidst the different and
incorrect understanding of Service Oriented Architecture (SOA), it is important to re-
establish the fundamental principles of SOA. Web Services Architecture (WSA) and web
services are realizations of SOA. It is also interesting to understand how semantic web
technologies influence SOA design considerations and implementation through semantic
web services. Web Services Business Process Execution Language (WSBPEL) is a
related technology addressing service orchestration. Web Services Choreography and
Web Services Security are important areas related to WSAIF. SAVAGE related
technologies such as Extensible 3D Graphics (X3D), SAVAGE Modeling and Analysis
Language (SMAL) and Discrete Event Simulation (DES) are also discussed. The chapter
ends with description of the tools used in the implementation, testing and deployment
activities, namely NetBeans, Subversion (SVN) and Protégé.

B. SOFTWARE ARCHITECTURE
1. Architecture Qualities

In software requirements analysis, defining architecture qualities specific to the
operational needs for a software application forms part of non-functional requirements. It
is also important to consider tradeoffs while defining architecture qualities. Some of the
widely used architecture qualities are reliability, performance, scalability, security and

maintainability.

a. Reliability

Reliability of a software application is related to its “uptime” or

availability (Gorton, 2006). It is typically measured by mean time between failures, or
5

mean time between recovery of a software application. It is also considered to be the
most critical architecture attribute. This is because software applications are expected to

be available (or not to fail) during operational hours.

b. Performance

A performance quality requirement defines a metric that states the amount
of work an application must perform in a given time (Gorton, 2006). Typically, the
performance of a strategic information software application has to be acceptable. It is also
important to note that poor performance can deter users from using the software
application. In military tactical software applications, performance is a critical

architecture attribute in view of the expected high rate of data update.

C. Scalability

Scalability describes how the design of the software infrastructure adapts
to increases in usage, transactions and deployment requirements. It is often difficult to
validate scalability of a software application because of the large amount of resources
required to establish the test scenarios. Thus it is practical to leverage good engineering
practices from more mature technological areas. Scalability is an important architecture
attribute for software frameworks or middleware deployed to “connect the nodes” in a

multiple-agencies environment.

d. Security

Security design considerations include authentication, authorization,
confidentiality and integrity. A great deal of work has been performed in this area for
Web Services and SOA. Authentication verifies the identity of user. Authorization
defines the resources that the authenticated user has access to. Java Authentication and
Authorization Service (JAAS) is an example technology solution. Transport-layer
encryption (Secure Socket Layer (SSL)) and message-level encryption (XML-
Encryption) is typically the solution to ensure data confidentiality. Data integrity can be
realized via digital signature. Security is a mandatory requirement for deployed software
application. It is also important to note that software application security implementations

usually come with architecture performance tradeoffs.
6

e. Maintainability

Maintainability refers to software application supportability. This measure
includes the testability and modifiability of the software application. To put it simply, it
measures the ease of making software enhancements and testing, troubleshooting and
fixing software issues. Software application maintenance can be preventive (which is
preferred) or reactive. Reactive maintenance is necessary when preventive maintenance
fails to mitigate a certain technical risk of system failure. Reactive maintenance tasks for
mission-critical systems are stressful for Information Technology (IT) engineers. This is
because of the required high service level which means low tolerance (ie. short response

and recovery) for software issues during operations.

2. Design Patterns and Object Oriented Programming

Object Oriented Programming (OOP) is a programming paradigm. It introduces
the concept of classes. Interactions are accomplished by message passing between
instantiated objects. Design Patterns by the “Gang of Four” (Gamma et al., 1995) is a
collection of reusable Object Oriented design templates widely used in software
applications. OOP features such as abstraction and interfaces to software components
can be clearly defined within the abstract classes. The implementation of the interfaces is
handled by the subclasses. These features add flexibility to the object oriented paradigm.
The key quality of design patterns is that they are proven successful “best practices” for

software design.

Patterns are classified into three categories: creational, behavioral and structural.
Creational patterns deal with creation of objects in a system. They are abstract factory,
builder, factory method, prototype and singleton. Behavioral patterns focus on the logic
that the objects within the system are managed. Chain of responsibility, command,
interpreter, iterator, mediator, memento, observer, state, strategy, visitor and template
method are the Behavioral patterns. The popular Model-View-Controller architecture
pattern can also be considered as a type of behavioral pattern. Structural patterns describe
ways to partition and combine entities of a system. It captures the relationships among
entities of a system. Adapter, bridge, composite, decorator, facade, flyweight, half-object

plus protocol and proxy are structural patterns.
7

Although it is a good practice to harness the potential of Design Patterns in
software development, over-applied Design Patterns can result in unnecessary
performance overhead. This is because of the unnecessary run-time overhead; for
example, it takes time to execute a chain of responsibility or visit an entire composite
pattern when there is no requirement (either use case and design) to do so. Although
design patterns serve as a good practice, they do not guarantee quality source code
implementation. In other words, a good developer can produce more efficient and more
effective as compared to a less experienced developer. This happens even if both
developers are implementing the same design pattern. Furthermore, testing is still
required for each use case to verify that the operation is implemented correctly.

3. Model-Driven Architecture (MDA)

MDA is a software design approach used for development of software
applications. It provides definition of models, which are a set of guidelines for the
structuring of specifications. Models provide abstraction of a software application that
allow various stakeholders to reason about the software application from different
viewpoints and abstraction levels (Gordon, 2006). MDA is related to various standards,
which include Unified Modeling Language (UML), Meta-Object Facility (MOF), XML
Metadata Interchange (XMI), Enterprise Distributed Object Computing (EDOC), the
Software Process Engineering Metamodel (SPEM), and the Common Warehouse
Metamodel (CWM). MDA is launched and supported by Object Management Group
(OMG).

4. Unified Modeling Language (UML)

UML is a standardized software modeling language used in the field of software
engineering. The graphical notation comprises structure, behavior and interaction
diagrams. Structure diagrams focus on the elements that are required to be modeled in a
software application. Class, component, package, deployment, object and composite
structure diagrams are structure diagrams. Behavior diagrams model what happens to the
elements within the software application. Activity, state machine and use-case diagrams
are behavior diagrams. Interaction diagrams emphasize on the modeling of the flow of

control between the elements in the software application. Interaction diagrams include

communication, interaction overview, sequence and timing diagrams.

UML activity diagrams can be used to model web services composition (Skogan
et al., Web Service Composition in UML, 2004). Extensible Stylesheet Language
Transformation (XSLT) is used to transform the UML activity model to a web service
composition language such as WSBPEL and Workflow with Separation of Concerns
(WorkSCo).

5. Middleware and Interoperability

Middleware refers to a commonly used piece of software that connects two or
more software applications so that data can be exchanged between them. It also refers to
the software layer that sits between the operating system and the software application it

connects to. As such, middleware is typically pertinent to developers and transparent to

the user.
Business Process Orchestrators BizTalk, TIBCO StaffWare,
ActiveBPEL

: Message Brokers BizTalk, WebSphere Mes-

L o . sage Broker, SonicMQ

Application Servers J2EE, CCM, .NET
Traﬁsport o . _ Message-Oriented Middle-
o o | ware, Distributed Objects Sys-

tems

Figure 1. Four classifications of middleware technologies (From Gorton, 2006).

Middleware can be classified into transport, application servers, message brokers
and business process orchestrators (Gorton, 2006). The transport layer refers to pipes
used for sending requests and for moving data between software components. Examples
are distributed object systems and message-oriented middleware. Application servers sit
on top of the transport layer and have additional capabilities such as transaction, security
and directory services. Some of the examples are BEA Weblogic, JBOSS, Tomcat, IBM
Websphere and .NET. Message brokers are software that translates from sender’s formal

9

message protocol to a receiver’s formal message protocol on a network. It leverages the
basic capabilities of transport layer and/or application servers. Some examples of
message brokers are SonicMQ and WebSphere Message Broker. Business process
orchestrators have added capabilities for workflow orchestration for business processes.
Some of the examples are BizTalk and ActiveBPEL. However, current implementation of
middleware seeks to achieve interoperability given a commonly defined protocol or open
standard. Perhaps middleware technology has a greater potential, if systems of systems

integration might be accomplished by synergizing and adapting multiple open standards.

6. Software Agents

Software agents are basically software with situated logic that acts on behalf of
human users. They exhibit characteristics like responsiveness, pro-activeness and the
ability to cooperate with other software agents to achieve multiple objectives. From an
architecture perspective, the definition is not sufficiently clear to distinguish between the
various application systems (Gorton, 2006). On the other hand, the definition is a good
design consideration for categorizing and implementing agent-based functionality and
behaviors within an architecture component. In other words, it can be considered as a
very specific type of controller in a typical Model-View-Controller (MVC) architecture

model.

Rao and Su, includes a survey of automated web service composition methods.
The paper mentions that related areas of research basically fall into two realms: namely
workflow composition and Al planning. The paper focuses on Al planning, showing that
Al planning methods for workflow composition are classified into five categories. They
are situation calculus, Planning Domain Definition Language (PDDL), rule-based
planning, theorem proving and others. The paper also proposed a general framework for
automatic web services composition. The process of automatic service composition
consists of five phases, including presentation of single service (ie. advertising atomic
services), translation of the languages from external languages (used by service users) to
internal languages (used by system), generation of composition process model, evaluation
of identified composite services for prioritization, and execution of selected composite

service.

10

C. SERVICE ORIENTED ARCHITECTURE (SOA)

SOA is a style of architecture. Business components are cleanly partitioned and
consistently represented as services. The services communicate with each other either by
passing data among the services or by coordinating activities among the services. This
also establishes a common model for automation logic and business logic. The model
applies equally to a task, solution, an enterprise, a community and beyond (Erl, 2005).
SOA affords agencies the ability to take advantage of new technologies more easily and

respond to end-user demands more quickly and cost-effectively (Matthews, 2008).

The ideal SOA has resources that are decoupled and consistently represented.
Resources in an IT architecture context can be data, automation logic, business logic, a
task, a solution, an enterprise, a community, and beyond (Erl, 2004). Thus, by adhering to
this methodology, coupled with the understanding of fundamental SOA concepts,
principles and methodology, open standards such as Web Service Architecture (WSA)
and web services offer realizations of the SOA vision. However, according to Thomas
Erl, the rise of false SOA has distorted this vision. Many believe that a technical
architecture that is service-oriented is simply one that comprises web services. The
assumption that the benefits of SOA are attainable solely by investing in web services
platform is incorrect. Such perception of a “true path of service-orientation” might further
reinforce SOA anti-patterns (bad practices) by further entrenching traditional distributed
computing models or, worse, some propriety software solution. Hence, the best way
forward is for organizations to have a good understanding and to focus on an ideal IT
infrastructure that is transformed by SOA as a style of architecture and work

progressively towards aligning systems with the targeted model.

SOA-based applications tend to perform well for strategic applications. Typically,
strategic systems sit in a protected environment. With a network infrastructure that
includes reliable high capacity bandwidth. On the other hand, there are identified issues
when SOA is applied to tactical applications for military use. Establishing and
maintaining connectivity between applications and services in a diverse distributed
tactical environment can be highly difficult. Furthermore, bandwidth in a wireless tactical
environment is limited. Hence, to address these issues, there is a need to rethink data-

11

exchange strategies. Some of the approaches include resolving “small pipe syndrome”
through. XML compression, reducing web services calls, batch processing, etc. and also
overcoming intermittent connectivity through the use of event driven architecture with
robust messaging framework, asynchronous messaging and leverage rich/”smart” client

so that functionalities can be retained even if the connection drops (Matthews, 2008).

D. WEB SERVICES ARCHITECTURE (WSA)

WSA is an example variation or realization of SOA using particular standards, as

shown in Figure 2.

Berwoe
Biroseer

e a Ilele]]

Figure 2. Web Services Architecture consists of service broker, service requester
and service provider.

The key components are service provider, service requester and service broker.
The service provider refers to the organization deploying the web services. Web Service
Description Language (WSDL) descriptions of the web services are registered with the
service broker. The service broker is typically realized by open standards such as
Universal Description, Discovery and Integration (UDDI). UDDI is a platform-
independent, XML-based registry for advertising available web services. The service
requester looks up the service broker for information about the web service such as its
addresses and endpoints, and then makes http/https invocation of the web service. The
protocol which enables such consistent XML-based message bindings is called Simple
Object Access Protocol (SOAP).

12

Wu and Chang have done a comparison between nine WSA styles (Wu and
Chang, 2005). They can be broadly categorized into broker-based architecture and peer-
to-peer (P2P) architecture. Broker-based architecture includes matchmaker broker,
layered matchmaker broker, facilitator broker and layered facilitator broker. P2P
architecture includes P2P discovery, matchmaker with P2P discovery, split code with
P2P execution and mobile code with P2P execution. Architecture quality properties used
for comparison are loose coupling, interoperability, scalability, simplicity, extensibility,
performance, security, reliability, visibility and composability. Table 1 povides a

summary evaluation of the two styles according to these quality properties.

Style Dertvation

Loosely Coupling
Interoperability
Scalability
Extensibility
Performance
Composability

Simplicity
Reliability

Security
Visibility

Wt n s arcechud Fomben

Matchmaker Broker 1 2]-1]1 0|10 -1]1]-1
Layered Matchmaker Broker fjojoj2|tjoj1f1yp17]-
Broket | Faciftator Broker 22 222|212 2]}
Layered Facilitator Broker 2012|1111 211]1]-1]2 2
Pure Peer-to-Peer Discovery oj2(2(0fo0|t]-2]2]-2]-2
Matchmaker + P2P Discovery 1] 1 1 0 0 | -l 2 | -1]
P2P Split Code +P2P Execution 202211201]-2]2
Mobile Code + P2P Execution ol 1| 2]-1]1 1 | 2]0})-2]1
SplitCode +MobileCode+P2PE | 1| 1 | 2 [-2 [1 [2 [2[0]-2[]1
Table 1. Comparison between WSA styles base on architecture quality properties

(From Wu and Chang, 2005).

The score is an integer that ranges between -2 to 2 inclusive. The value of this
number refers to the degree of which an architecture style exhibits the architecture quality
property. Each quality property is assigned a weight from 1 to 5, showing the significance

of each architecture quality property with respect to WSA in general.

13

E. WEB SERVICES

The World Wide Web Consortium (W3C) defines web services as “a software
system designed to support interoperable machine to machine interaction over a
network.” Basically, web services expose a web application programming interface (API)
over the network. WSDL is a XML-based language which provides a model to describe
web services. Information about web services’ operations, bindings and addresses is
described in WSDL.

It is common to implement business modules, such as data or tools as web
services, using a WSA. Web services in this case are the front-end interface or the
wrapper to the various business modules. Web services can also be implemented as
adapters (data transformers) between two services which do not precisely agree on the
syntactic and semantic of application constructs (Harikumar et al., 2005). In this paper,
an event driven architecture is explored and components of the architecture include event
listener, repository, messaging, pre/post processor, web services (as adapter) and XSLT
engine. The XSLT engine is the implemented data transformation logic for the web

services.

F. SEMANTIC WEB SERVICES ARCHITECTURE (SWSA)

The Semantic Web Services Architecture (SWSA) committee has identified the
scope and potential requirements for a semantic web services architecture (Burstein et al.,
2005). The committee has also created a set of architectural and protocol abstractions
based on the functional and architectural requirements defined. According to SWSA,
phases of semantic web service interaction include candidate service discovery, service
engagement (specifically service negotiation and contracts), service process enactment

and management, community support services, and quality of service.

G. SWSA AND SOFTWARE AGENTS INTEROPERABILITY

It is interesting to consider the interoperability between software agents and
semantic web services. The idea is to introduce middleware “AgentWeb Gateway” to
make multi-agent systems standards compatible with existing web services standards

without changing their existing specification and implementation (Shafiq et al., 2006).

14

Solutions that are implemented in AgentWeb Gateway include a service discovery
converter which ensures interoperability between Directory Facilitator (DF) and UDDI.
A service description converter ensures interoperability between WSDL and DF-Agent A
description and communication protocol converter ensures interoperability between
Agent Communication Language (ACL) and SOAP. Foundation of Intelligent Physical
Agents (FIPA) is an IEEE standards committee and the major specification governing
body of Software Agents and Multi Agent Systems. Figure 3 shows the architecture of
AgentWeb Gateway middleware that enables compatibility between multi-agent systems

standards and existing web services standards.

Agent Platform AgentWeb Web Services
Directory
Facilitator Search query converter

DF to UDDI UDDI
uDDI to DF
Service Description
converter

DFAgentDesc to
WSDL Web
WSDL to Service
DFAgentDesc
Communication
protocol converter
ACL ko SOAP Ws

Client

SOAP to ACL

Figure 3. The architecture of AgentWeb Gateway middleware which contains
search query converter, service description converter and communication protocol
converter. (From Shafiq et al, 2006).

H. SEMANTIC WEB TECHNOLOGIES
1. Resource Description Framework (RDF) and RDF Schema (RDFS)

Resource Description Framework (RDF) is a language construct for making
assertions about a resource in the form of subject-predicate-object expressions. This
model is also called triples. A resource is identified by a unique Uniform Resource

Identifier (URI).
15

Statement

Figure 4. RDF subject-predicate-object model that make assertions about a resource.

Resource Description Framework Schema (RDFS) is an extension of RDF which
provides the additional capability of defining classes and class properties. RDFS enables
the creation of a vocabulary and has the ability to define class, sub-class, property domain

and property range.

RDF and RDFS are both W3C recommended specifications and are the building
blocks for defining the Semantic Web (Klyne et al. 2004) (Brickley et al., 2004).

2. Web Ontology Language (OWL)

Web Ontology Language (OWL) is an XML based vocabulary that extends RDFS
to provide a more comprehensive ontology representation, such as cardinality constraints,
quantifiers, etc. Reasoning engines have been developed to check for semantic
consistency and help to improve ontology classification. OWL is also a W3C
recommended specification. There are three dialects of OWL; namely, OWL-Lite, OWL-
DL and OWL-Full. Each dialect has a different level of expressiveness and reasoning

capabilities.

a. OWL-Full

OWL-Full is the complete language and was designed to preserve some
compatibility with RDFS. Thus, it has no restriction on RDF types used and has the
advantage of being useful for modeling a full representation of a domain. However, the
trade off is the high complexity of the model. This can result in sophisticated
computation that may not complete in finite time.

16

b. OWL-Description Logic (OWL-DL)

OWL-DL is less expressive than OWL-Full but more expressive than
OWL-Lite. OWL-DL has restrictions on the use of some of the description tags. Thus
computation formed by a reasoning engine on OWL-DL ontologies can be completed in a
finite amount of time (Lacy, 2005). It is also the most commonly used dialect for

representing a domain ontology for semantic web applications.

C. OWL-Lite

OWL-L.ite is the least expressive compared to OWL-Full and OWL-DL,
and is suitable for building ontologies that only require classification hierarchy and
simple constraints. In view of its simplicity in expressiveness and constraints capabilities,

OWL-L.ite provides the most computationally efficient reasoning.

3. Rule Interchange Format (RIF)

The primary goal of Rule Interchange Format (RIF) is to be an effective means of
exchanging rules that have the potential to be widely adopted in industry in a way that is
consistent with existing W3C technologies and specifications (Paschke and Hirtle, 2008).

RIF uses XML as the normative concrete, human-readable syntax.

l. SEMANTIC WEB SERVICES
1. Web Ontology Language for Services (OWL-S)

Web Ontology Language for Services (OWL-S) is an OWL ontology for web
services and was originally known as DARPA Agent Markup Language for Services
(DAML-S) (Martin et al., 2004). The purpose of this language is to address the
limitations of WSDL and UDDI. It is also used to describe rich and flexible metadata
required for web services automation such as web services discovery and orchestration.

The principal components of an OWL-S description of a service are shown in Figure 5.

17

ServiceProfile

ServiceGrounding }
\ ServiceModel)
/7

Figure 5. OWL ontology for OWL-S. The class Service presents ServiceProfile, is
describedby ServiceModel, and supports ServiceGrounding (From Martin et al.,
2004).

ServiceProfile describes “what the service does.” Properties used to provide a
complete description of serviceProfile include serviceName, intendedPurpose,
textDescription, role, provideBy and requestBy. Functional attributes of serviceProfile
include geographicRadius, degreeofQuality, serviceParameter, communicationThru,

serviceType, serviceCategory, qualityGuarantees and qualityRating.

ServiceGrounding describes “how to access the service” which includes protocol,

message format, serialization, transport and addressing.

ServiceModel

ProcessModel
Process Control

CompositeProcess

Figure 6. Components of ServiceModel in OWL-S.
18

inputs
outputs
preconditions
effects

Sequence
s plit
RepeatUntil

iy e —

(Profile H Process M)

—

T
S
" . S
,,-o-"""'f "'\--.______‘__\-\--
. T
it H:n.—_

,-'—""''_FH-
A] jro e Lo b - ixpil
~. - —
atomic H‘H—.(Sir‘.‘lpm Ng—0mp{ composite >
-o-""'ff e _.o-""f/ \H"\—_

e e

Figure 7. Components of Process Model which is part of ServiceModel.

ServiceModel (Figure 6) describes the process to access a service. The subclass of
serviceModel is ProcessModel (Figure 7). ProcessModel has subclasses Process ontology
and ProcessControl ontology. There are three types of Process, namely atomic (directly
invocable), simple (single-step, but not directly invocable) and composite (made up of
other processes). The ProcessControl ontology provides constructs that describe temporal
or state dependencies, mapping rules for input state properties to corresponding output
state properties, and defining representations for messages about the execution process
state. The constructs for ProcessControl ontology are sequence, split, split+join,
concurrent, unordered, choice, if-then-else, repeat-until and repeat-while. The
ProcessControl ontology is still under development. OWL-S ProcessControl ontology has
the potential to be equivalent or better than the service orchestration layer design
provided by the Web Service Business Processing Language (WSBPEL). The purpose for
OWL-S is to provide sufficiently rich metadata so that software agents are able to read in
the data and to automate web service discovery, invocation, workflow orchestration,

interoperation and workflow monitoring.

2. Web Service Modeling Ontology (WSMO)

WSMO is a formal ontology used to describe various aspects of semantic web
services. The ontology is comprehensive such that it can be exploited by software agents
to automate service discovery, composition, execution and interoperation. The WSMO
working group is part of the European Semantic Systems Initiative (ESSI) cluster (Bruijin
et al., 2005).

19

There are 4 modeling elements to WSMO: ontologies, web services, goals and
mediators. WSMO ontologies consist of non-functional properties, mediators, concept
definitions, relation definitions, axioms, and instances (Lara et al., 2004). The purpose of
WSMO ontologies is to define the information’s formal semantics and allow applications

to link machine and human terminologies (Haller et al., 2005).

WSMO goals are basically high-level descriptions of objectives that a service

consumer has when he needs to consult web services.

WSMO mediators are one of the most important elements. A mediator’s role is to
address heterogeneity problems. This refers to syntactic and semantic mismatches
between linked elements. Thus, the mediator allows a description of mappings,
transformation and reductions between linked elements. There are 4 different types of
mediators, namely ggMediator (goal to goal), ooMediator (ontology to ontology),

wgMediator (web service to goal) and wwMediator (web service to web service).

WSMO web services provides comprehensive and loose coupling of web services
modeling elements. WSMO defines non-functional properties such as performance,
quality of service, reliability, security or trust. Definition of WSMO web services also
includes the use of WSMO Mediators. Functional capabilities include pre conditions,
assumptions, post conditions and effects. WSMO web services also describe details about
operation of services, such as error information and compensating services in the event
that an error occurs. It defines an orchestration proxy for static and dynamic composition.
Message exchange patterns in WSMO web services describe temporal and causal
relationships. Finally, WSMO allows description of several groundings for the same web

service.

Web Service Modeling Language (WSML) is the formalized modeling language
for WSMO. It also provides a rule-based language for the Semantic Web. The WSMO
working group includes the WSML working group.

Web Service Modeling eXecution environment (WSMX) is a software
architecture that enables creation and execution of semantic web services based on
WSMO (Haller et al., 2005). The architecture has the following components (see Figure

8): compiler, matchmaker, data mediator, adaptor, choreography engine, composition and
20

communication manager. The compiler component is responsible for checking the
syntactical validity of WSML documents. This component is also used to store parsed
information persistently. The matchmaker is used to find suitable services to achieve a
goal. The data mediator is the implementation of the ooMediator from the WSMO
specification. The adaptor resolves semantic mismatch problems before interoperability
between composed services becomes an issue. The choreography engine supports the
composition of web services. Choreography of a web service defines the communication
pattern which another service/requester has to abide before interacting with the web
service. The composition component is used for executing composite/complex
composition of web services in order to achieve a goal. The communication manager has
two tasks. The component has to handle invocations from requesters. Secondly, it is able
to invoke web services, receive and communicate the results back to WSMX. The
communication manager is able to handle both synchronous and asynchronous web

services calls.

UserInterace |
 {(Web Service -
Modeling Tool) 1

NETWORK
S‘Con{n{unicatibn e “cominunic‘a’tion o
Ol Wenager || 0 . WSMXManager .) Hanager L
e } Apesersia{ | proidu St [1 i s oy
1| soap o B 1 g
5 J o Matehe b Datg il Chorso- H
] e :)
L= Vool - maker Lsﬂm’ || Mediator | graphy - Senice Provider | ¢
% ; ; ; : L.
2 — — SORP || -
3 ' ResourcesManager
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,, enew
sl = ‘ - —
o - Event Datahase | SeniceRepository H
: 1 \

Figure 8. WSMX is a software architecture that enables creation and execution of
semantic web services base on WSMO (From Haller et al., 2005).

21

J. WEB SERVICES BUSINESS PROCESS EXECUTION LANGUAGE
(WSBPEL)

WSBPEL focuses on the design of a service orchestration layer by creating
business process definitions. It is basically a language to describe business process
behavior based on web services. It is formally called BPEL4WS. The release of
BPEL4WS 1.0 specification was a joint effort by IBM, Microsoft and BEA. Later, SAP
and Siebel Systems joined in for the release of BPEL4WS 1.1. It is currently an
Organization for the Advancement of Structured Information Standards (OASIS) open
standard. In order to enable capabilities such as automatic web service discovery,
orchestration and invocation, WSBPEL works with other open standards such as UDDI
and WSDL.

It is important to address the mismatch issue between two services in an
orchestrated workflow. Focusing on business level interfaces and protocol, adaptation for
replace ability can be achieved (Benatallah et al., 2005). The idea is to make one service
compliant to another. Different types of mismatch patterns are identified. At the
operational level, there are Signature Mismatch Pattern (SMP) occurs when an operation
has the same functionality but differs in operation name, or the number, order or type of
input/output parameters. WSBPEL’s receive, assign and reply activities are required to
resolve such operation-level mismatches. Another operational level mismatch is
Parameter Constraints Pattern (PCP) which means differences in value ranges between
two operations. WSBPEL’s switch, invoke and reply activities are required to resolve this
mismatch. A protocol level mismatch refers to extra message, missing message and
message split type of mismatches. WSBPEL activities are sufficient to resolve such

mismatches.

K. WEB SERVICES CHOREOGRAPHY DESCRIPTION LANGUAGE (WS-
CDL)

Web services choreography refers to the sequence of messages between different
services to accomplish a flexible composition of services, particularly in an inter-
organizational business process. Choreography can be global or local. The global model

of choreography specifies the message exchanges from an overall point of view and the

22

local model defines the message interactions from the perspective of one party (Mendling
and Hafner, 2004). WS-CDL is an XML-based language that describes peer-to-peer
collaboration protocols based on web services. The common and complementary
observable behavior to achieve a common business goal is defined from the global

viewpoint. The behavior here refers to the order of message exchanges.

There is a distinction between choreography and orchestration. Orchestration is
defined by one party and refers to the execution part of the inter-organizational business

process. There are multiple parties involved in choreography.

L. WEB SERVICES SECURITY (WS-SECURITY)

Web services identification, authentication and authorization are enabled by the
WS-Security standards. Security tokens assert claims and can be used to assert the
binding between authentication keys and security identities. An authority can vouch for
or endorse the claims in a security token by using its key to sign or encrypt (it is
recommended to use a keyed encryption) the security token thereby enabling the
authentication of the claims in the token. Thus, authentication proves the identity and
authorization states the extent to which the authentication applies. Specifications that
enable these mechanisms include SOAP Message Security published by OASIS. In WS-
Security, Security Assertion Markup Language (SAML), .NET Passport and XML
Access Control Markup Language (XACML) are the three primary extensions that
support the implementation of single sign-on (SSO).

For message confidentiality, transport level encryption (which can be handled by
the conventional secure socket layer (SSL)) and message-level encryption (specified in
XML-Encryption standards recommended by W3C) need to be considered. XML
encryption can be applied to parts of a SOAP header and/or SOAP message body. Block-
encryption algorithms that can be used in the framework include AES, 3DES and RSA.
SOAP message integrity can be ensured via XML-Signature, which is a W3C
recommended standard. The specification allows arbitrary cryptographic signature and
message authentication algorithms, symmetric and asymmetric authentication schemes,

and key agreement methods.

23

For web services security policies, the WS-Policy framework provides the means
to attach properties such as rules, behaviors, requirements and preferences to web
services. Such individual properties are represented by policy assertions. Assertions are
communicated non-negotiable and preferred policies. WS-Policy can be incorporated
within majority WS-* extensions. WS-Policies incorporate assertions with respect to WS-
Security, WS-Trust and WS-SecureConversation. The result is the governing standards

for web services WS-SecurityPolicy.

For key management for SOAP messages (messages in XML format), the XML
Key Management specification (XKMS) is the governing standard. The purpose of
XKMS is to specify protocols for distributing and registering public keys. XKMS 2.0
comprises of 2 parts: namely XML Key Information Service Specification (X-KISS) and
XML Key Registration Service Specification (X-KRSS).

XML document-centric security is an interesting approach to XML security,
which is essential to WS security. The enabler is a security architecture that is expected to
provide confidentiality, integrity, and authentication commensurate with the nature of the
generated document, maintaining the information objects at an appropriate level of
security and acceptable level of risk, as discussed in (Williams, 2008). That thesis aims to
investigate the possibility of standardizing XML-based secure document and message
dissemination among multinational coalition partners or a multi-agency Homeland

Defence task force.

M. VISUALIZATION AND BEHAVIOR MODELING
1. Extensible 3D (X3D) Graphics

Extensible 3D (X3D) Graphics is the ISO Standard for representing 3D computer
graphics (see Figure 9). It is a royalty-free open-standard file format and run-time
specification. It also has the capability to encode scene graphs in XML. X3D is the
successor to the Virtual Reality Modeling Language (VRML) and encompasses
extensions to VRML such as Humanoid Animation, GeoVRML, etc. Other features of
X3D include its ability to integrate with web services and distributed networks. The
standard is componentized, extensible, embedded application ready, real-time and well

24

specified (Web3D, 2008). In order words, 3D graphics on web is made portable using
X3D. X3D is the selected visualization technology used in Autonomous Underwater
Vehicle (AUV) Workbench and Anti-Terrorism Force Protection (AT/FP) projects with
Naval Postgraduate School. There are various editors for X3D, including X3D-Edit
which is adapted from earlier designs by the Naval Postgraduate School. The tool has
advanced features such as collaboration and version control support which better equip
developers in a team-based development environment (Brutzman and Daly, 2007).

Figure 9. Example of X3D visualization model.

2. Discrete Event Simulation (DES)

Discrete event simulation (DES) is triggered via scheduled events which can have
arbitrary durations between them. When handling each event, necessary calculations are
made, entity states are updated and new events are added into the schedule. The
simulation time is advanced directly to the next event on the event queue. Hence, DES
has the advantage of streamlining computation as compared to time-step based
simulation. Time-step based simulation incurs overhead at each time step even if there is
no new simulation event to perform. DES generally results in better performance from an

architectural perspective for many classes of problems.

Event graphs are used to design DES models (Schruben, 1983). To facilitate
development of DES models, the Naval Postgraduate School developed SIMKIT and
VISKIT. SIMKIT is a Java API for creating DES models. VISKIT (Figure 10) is a visual

25

development environment for SIMKIT and has java code generation capabilities. DES
models created using VISKIT are also represented in XML. With these capabilities,
VISKIT adds value by increasing the productivity of developers who create and integrate
DES models.

Dl [de Hebo
Event Graph Eitor. | Assembly Editor | Assesbily flun

sk () () v IR

FatroiCralt Explosieeladenessel

dp Zoo: @ B

Figure 10. VISKIT event graph editor is used to create event graphs. VISKIT
autogenerates java source code and XML representation from the event graphs.

3. SAVAGE Modeling and Analysis Language (SMAL)

The SAVAGE Modeling Analysis Language (SMAL) is a XML based language
providing comprehensive constructs for describing tactical, physical and simulation
oriented metadata for vehicles, terrain and other entities in a virtual environment (Rauch,

2006). An excerpt from the SMAL online documentation is shown in Figure 11.

SMAL is used in Viskit, the SavageStudio scenario-authoring tool, the Scenario
Authoring and Visualization for Advanced Graphical Environment (SAVAGE) model
archives and the Savage Defense X3D model archives. The SMAL construct (specifically
SimulationAgent element) in a Savage X3D model archive is the basis for matching DES
behavior to X3D visualization.

26

= hitpw//sevage nps.edu/Tavege/Tools/S! fdocsCavageModelingAnalysisLanguage L0/ Smal 1L Ohtred Jorars Internet Explorer
/5 hitpse/jcavage nps edu/Tavage ool SMAL docs/SrvageModelingAnalysisLanguageL 0y Smal L0 hered - Windows Internet Explo

? -. 5
File Edit View Fwwortes Tools Help
W M avege npredSavege ToolSMAL fdoe.. o= @ =t i fhge= BToolsw
Scherna 1.0.x8d
https:iisavage.nps.edu/Savage/Tools/SMAL/SavageModelingAnalysisLanguage1.0.xsd
unqualified
qualified
areaUnits AirTemperatureCondition AttributeExtensibleSMALElementType attlist. SampleConfigurationParameters
duration AssociatedEntity BoundingPolygonType
linearUnits Association CartesianCoordinateType
speedUnits AssociationSet ElementExtensibleSMALElementType
startTime AttachmentPoint FullyExtensibleSMALElementType
temperatureUnits AttachmentPointLocation HeadingType
unitSysten AttachmentPointSet ObjectDefinitionType
weightUnits Background OverlaylmageDescriptorType
BehaviorParameterSet QuaternionType
CartesianCoordinate SpeedDirectionType
Classification TemperatureConditionType
CloudConditionSet
CloudLayer

CurrentConditionParameters
DirectionOfiotion
DisConfiguration
DynamicResponseConstraints
EntityDefinition

EntitySet
EnvironmentalCondition
EnvironmentalConditionSet
GeographicExtent
GeographicLocation
GeoOrigin

GlobalVirtualL ocation

head

He:

¢ IETWER G NP

Figure 11. SMAL documentation on SAVAGE website
(https://savage.nps.edu/Savage/Tools/SMAL/docs/SavageModelingAnalysisLang
uagel.0/Small1.0.html).

4. Defense Model Archives

The model library is an open-source set of 3D models used for defense
simulation. Bugs are tracked online. The resources are available at
https://savage.nps.edu/Savage. The Defense model archives is a similar set of models

used defense simulation. However, the access is only limited to U.S. citizens and
government contractors only. Catalog builder software reviews the two-tier SAVAGE
model file directories and files to read in camel-case directory, file names, embedded
document meta values and SMAL metadata nodes to create a content catalog in XML.
The catalog builder is written in Java. An XSLT stylesheet then reads the SAVAGE
content catalog and creates the various HTML pages associated with the models. A
build.xml project file invokes XSLT stylesheets and facilitates in the creation of zip
archives, uploading files and other deployment tasks. Subversion (SVN) is the tool used
for the version control of source code and models. The archive infrastructure is

extensible, with X3D-Edit and Netbeans both supporting model contribution by authors.

27

N. NETBEANS 6.1 AND VERSION CONTROL
1. NetBeans Integrated Development Environment (IDE)

With support for UML features, NetBeans is an integrated development
environment for software application analysis, design and implementation. One can
easily construct UML diagrams by selecting the design UML components required from
the component palette and then dragging and dropping the components into the diagram
editor. UML diagrams supported by NetBeans are use case, state, sequence, class,
deployment, component, collaboration and activity diagrams, which provides good

coverage for most software engineering needs.

The “apply design patterns” feature invokes a wizard to facilitate an intuitive step-
by-step approach that incorporates UML design pattern templates into the software
application design. Basic understanding of UML and design patterns is still necessary for
effective use of the tools when building a quality software design. This is because it is the
use case and its realization that determine the suitable design pattern to meet the original
design requirement. “Over applying” a design pattern when there is no design
requirement to support the design decision may result in problems such as reduced
performance. The UML diagrams are useful for documentation purpose. Besides that,

NetBeans UML diagrams are also the basis for forward engineering in NetBeans.

2. Forward and Reverse Engineering

NetBeans forward engineering refers to auto generation of source code from
UML diagrams within NetBeans. The source code for packages and class diagrams
(coupled with well-defined operations) can then be autogenerated. The source code for
sequence of class method calls between class instances that are captured in UML
sequence diagrams cannot be autogenerated. In other words, NetBeans only generates
classes, their attributes and methods (without detailed implementation). Developers have

to implement the details of each class method.

NetBeans reverse engineering refers to the autogeneration of design models by
NetBeans from source code. This feature is especially useful for existing software

applications that require design documentation updates. Source code can be imported into

28

NetBeans and then the basic design entities and models can be autogenerated from the
source code. Each basic design entity represents packages or classes (with details on
attributes and methods). These basic design models are the basic building blocks for
developers to create various UML diagrams. NetBeans reverse engineering is also useful

for easy synchronization of design models, given updated source code.

3. Implementation using NetBeans

Implementation is made easy in NetBeans with the use of the project creation
wizard. The type of project supported by NetBeans includes java, web, enterprise,
mobility, UML, SOA, ruby, C/C++, NetBeans modules and solution templates. The
project creation wizard increases the productivity of the developer by providing basic
software infrastructure for specific types of software applications. Hence, the developer
only needs to focus on the higher level business logic implementation. NetBeans has
intuitive icons to reflect the types of NetBeans components or entities created. The
customizable multi-panels and dashboards also make development more efficient because
they reduce memory load for developers to keep track of important information from
different panels. The refactor feature in NetBeans is powerful and helps developers to
make consistent changes across the application by consistently updating all dependent

modules that require changes.

In application development, developers often work in a team. Although NetBeans
supports version control tools such as CVS or SVN that helps to control source code
changes contributed by different developers, collaboration usually includes more
comprehensive requirements. Conventional collaboration tools such as groove or MSN
typically include features such as file sharing, chatting, co-editing design documents,
notification, forum discussion, etc. Such collaboration features can be incorporated into

NetBeans. These emerging features will further enhance the capability of the application.

4. Subversion (SVN) for Version Control in NetBeans

SVN is a version control tool released by CollabNet Inc. in 2000. It is used for
managing current and historical versions of source code and documents. It is released

under the Apache License and is used by many open source projects. Integration of SVN

29

as part of the NetBeans integrated development platform can eases the process of
updating source code into common code repository. It also helps to synchronize and
ensure that every developer in the development team adds or amends the right versions of
source code. SVN features include commits (from client to code repository), branching
(for parallel development), tagging (to synchronize release versions across software
applications), check out (from code repository to client), diff (to check for differences in
code between versions), etc. One of the reasons why SVN is preferred over CVS is
because the SVN executes atomic commits of source code. Either the whole transaction is
committed or none of it is committed. This mitigates the risk of partial commitment of
source code when there is some system or infrastructure issue (for example, the network
goes down during the source code commit process). Other advantages of SVN include

versioning of directories, renaming, better performance, etc.

O. PROTEGE AUTHORING TOOL FOR SEMANTIC WEB DOCUMENTS

Protégé is developed by Stanford University. It is a free, open source tool that
provides end users with the means to create, visualize and update ontologies. The Protégé
OWL editor enables users to build ontologies based on OWL. Protégé is extensible and
has plug-ins architecture. Using Protégé Java APIs, developers can add and integrate
application plug-ins into the Protégé platform to extend platform capabilities. One such
plug-in is the OWL-S plug in developed by SRI International. SRI International is an
independent, nonprofit research institute that conducts contract research for government
agencies and businesses. The OWL-S plug-in provides a usable means for user to
construct OWL-S for semantic web services. It has WSDL import feature that
automatically establishes service profile, grounding and atomic processes. User can then
add or edit OWL-S description. There are even graphical representation for OWL-S
features such as services ontology establishment (profile, grounding, etc.) and composite
processes. The XML for OWL-S is made transparent to Protégé users and is dynamically

generated by Protégé as the user creates or updates using the OWL-S plug-in.

30

OTHER TOOLS AND SERVICES
GeoServer (Figure 12) is an open-source server that connects information to the
geospatial web (http://geoserver.org/display/GEOS/Welcome). It is a type of Geographic

Information System (GIS). Using GeoServer, one can publish, subscribe and edit
information using open source standards. One has full control over the look of the map.

P.

Web Map Service (WMS) displays geographic data as raster images. Web Feature

Service (WFS) communicates real geographic data to and from the user in the form of
Geography Markup Language (GML). Web Map Service-Transactional (WFS-T) allows
users to edit geographic data in transaction blocks. GeoServer supports WFS-T and WMS
open protocols from OGC to produce JPEG, PNG, SVG, KML/KMZ, GML, PDF,
Shapfiles, etc. GeoServer supports display of maps on web pages, UDig, GVSig, Google
Earth and others. Each has the Ul interactive capability such as zooming and panning.

| |
f | .
f EMH‘_'S'_E_———'___ 5 |
J [|
f iz
| oy 0=
E =
| ——— |
B WSt F
= i |
|
! | |I
| -
pERRY 5T cnml T |I
T b
— o RRLEE |

[

1

f

|

| w1057 eonn

| |

Figure 12. An example of GeoServer display.

Q. SUMMARY
The chapter has discussed the related background work. Software architecture

considerations were discussed. WSA and web services are one realization of SOA.

31

Semantic web services leverage semantic web technologies and the technology further
enhances the realization of SOA. Related technologies such as WSBPEL, WS-CDL and
WS-Security are essential enablers for the WSAIF. SAVAGE-related tools and resources
were discussed because they provide a domain for application of the WSAIF. The chapter
concluded with descriptions of tools used in the implementation, testing and deployment
of SAVAGE web services, WSBPEL and OWL-S models for purposes of this thesis.

32

I1. ENVISIONED SOFTWARE ARCHITECTURE AND
INTEGRATION

A INTRODUCTION

This chapter discusses the three stakeholders of data, namely data owner, business
process owner and software developer. The overview of software integration technology
is elaborated. The speculated future software integration technology is mentioned. This is
followed by the introduction to the concept of “smart” integration. The SOA design
principles are discussed. The high level functional and architectural requirements for the
envisioned WSAIF are elaborated. The WSAIF components realize the high level

functional and architectural requirements.

B. STAKEHOLDERS

Data is the most important consideration when Information Technology (IT)
initiatives such as hardware migration, software upgrade and revamp are applied to
legacy software applications. These software applications contain critical data which are
essential for core business functions and day-to-day operations. Hence, legacy software
applications cannot be decommissioned or retired easily because critical data are tightly
coupled with legacy software applications. Data formats can be designed specifically to
support interoperability with legacy software applications. In order for legacy software
applications to integrate with other software applications, it is necessary to migrate
critical data to another format. Typically, an open format is adopted by all applications.
However, the technical cost and operational risks for such an approach are high. Research
performed by the Standish Group (2003) reports that 50-80% of a corporation’s IT
budget is spent on maintenance. Hence, it is important to understand the evolution of
software and the fundamentals of software integration (Hammer and Timmerman, 2008).
In other words, a good understanding of the benefits, limitations, differences and related
problems between different generations of software integration technologies can
influence the design of a more efficient and maintainable future software integration

framework.

33

Three stakeholders need to be considered (Figure 13): the data owner, business
process owner and software developer (Hammer and Timmerman, 2008). The data owner
is a person, commonly referred to as database administrator, who has full access to the
data and knows what each data value refers to. The data owner maintains the data
dictionary. The software developer is responsible for developing software applications
and maintaining them in production. The tasks for a software developers can be
outsourced to contractors. Thus, the software developer is often given limited access to
the data. Business process owners are typically a manager or executives who understand
the business value of the data, and knows how to interrelate the data to support business

requirements.

pcess Owner
P Marketing*

Data Ownér

Knowledge

Software Developer
Programmer, data modeler, etc.

Figure 13. Three stakeholders for business knowledge and data (From Hammer and
Timmerman, 2008).

34

C. SOFTWARE INTEGRATION TECHNOLOGY OVERVIEW

The following information on software-integration trends (database system,
network system, desktop system, internet and code generators) is summarized and taken

from Fundamentals of Software Integration (Hammer and Timmerman, 2008).

1. Age of Database Systems

Data integration is one of the key strategies for software application integration.
The motivation is to ensure interoperability to a common data format so that different
software applications can access the information. During the 1980s and 1990s, when
relational database technology became commercially viable, research initiatives explored
the possibility of integrating different types of database using relational database systems.
There were two approaches to such a task. One approach was to design a hybrid or
heterogeneous database management system (which is itself a relational database) that
enabled hierarchical, network and relational databases to work together (Figure 14). The
second approach was to develop productivity tools to automate migration of hierarchical
and network-based databases into a single relational database. The latter approach was
more successful. This was because the formal approach has issues such as complexity in
configuration, compromised integrity of heterogeneous database transactions and high

cost in maintenance.

35

ory? Hierarchical

#1 User
Issues
Query

HDBMS #3 Subquery2
Gty Network
Mgr #4 Results for Subquery2 DEMS

#3
Sub%‘f}-a

[
#4 Results for Subquery3| ~ Network
p: bacery DBMS

#6 Query
Manager
Retumns
Results

#5 Query
Manager
Merges

Subquery
Results

Figure 14. Heterogeneous DBMS enables hierarchical, network and relational
databases to work together (From Hammer and Timmerman, 2008).

Code generators for databases were another software capability sometimes used
for data integration. In this approach, hierarchical and network-based databases were
migrated to a relational database using COBOL report writers. Code generators for
databases take three types of input (Figure 15); schema for source database, schema for
target relational database, and a control file which would indicate rules for correlating
and transforming data. The output was source code for conversions. However, the
generated source code was typically quite hard to read and thus difficult to troubleshoot

and maintain. Metadata capabilities were used to describe relationships between source
and target systems.

36

Code
Generator

Figure 15. Code generators for database takes in schema for source database, schema
for target relational database and control file. The output is source code (From
Hammer and Timmerman, 2008).

2. Age of Network Systems

Creating a data warehousing was another solution for organizations to store and
manage multiple databases. It was used effectively in a distributed environment. Its
intended purpose was to facilitate analysis and reporting. As such, the technology
strategy hopefully met management requirements and organizational needs. However,
implementing and deploying warehouse solutions presented the follow challenges: 1) the
need to understand the nature of data available in source system; 2) the need to specify
the mapping logic between fields in data sources and attributes in warehouse schema; 3)
the consideration for initial loading of data warehouse; and 4) refresh contents of data
warehouse. Thus, various technological strategies were required to meet these multiple

challenges.

Extract, transform and load (ETL) products provided database warehouse
developers with a graphical user interfaces (GUI) to configure mappings between source
and target databases and transformation logic to be performed on data values before
updating the data warehouse (Figure 16). ETL products utilized an embedded RDBMS to
process data, thus they had database engine-based architecture. Advantages would
include loose coupling of ETL components to promote ease of installation. The GUIs

37

enhanced usability of the system and embedded engines enabled capabilities such as audit
trail of transactions that passed through the engine. Trade-offs would include the
potential of the ETL engine becoming a bottleneck and performance overhead in view of

managing transactions to staging tables.

Sources Target

ETL Engine

Data

Figure 16. ETL architecture diagram. The deployment Engine could be a separate
physical machine or running on the same machine (From Hammer and
Timmerman, 2008).

Gateways provide relational interfaces to non-relational data sources. The
technology was installed on servers with non-relational data sources deployed. It
provided access to these data sources via Structured Query Language (SQL) or Open
Database Connectivity (ODBC) and a metadata audit trail back to the data sources.

Hence, such adaptation capability complemented the ETL engine.

Data profiling tools scan and analyze relational databases. They can operate with
or without formal definition of input tables and were able to predict field boundaries by
patterns in data. The tools generated reports that contain format and content of fields,

frequency counts of values in data fields, and primary keys.

Data quality tools contained rich algorithms for “fuzzy matching” and entity
resolution. For example, they were able to determine if two sets of data values refer to the
same entity. Hence, they were good for tasks such as standardizing names and addresses,

eliminating duplicate records, and determining household relationships.
38

In a data warehouse, metadata was used to represent its summary information. In
other words, metadata provided the consolidated values about groups of transactions
rather than the value of a single transaction. Challenges faced were to ensure metadata
was updated or accurate, the limitations of not capturing the actual fields, and the time-

consuming process to hand-code test and transformation logic.

Enterprise Application Integration (EAI) was defined as the use of software
architecture principles to integrate a set of enterprise software applications. EAI
leveraged methodologies and integration solutions such as object oriented programming
(OOP). Middleware technologies such as Common Object Request Broker Architecture
(CORBA), COM+, etc were possible enablers. Asynchronous message invocations were
enabled by message queuing. Data standards were defined with XML. In order for EAI to
be efficiently maintained, data interfaces that translated application-native APl format

data interfaces to a standard message format in XML (or vice versa) need to be defined.

Adaptor technology emerged as software vendors offer software adaptors to ease
integration of Commercial Off-The-Shelf (COTS) applications. There were two types of
adapter technology. Plug-and-play adapters automated transaction-level integration
across various COTS applications. Each adapter translated between application-specific
formats to a neutral format supported by middleware. As such, adaptation was point-to-
point and application-specific. This results in maintainability and test complexity issues
when the adaptation strategy was scaled to a large organization’s requirements. Another
type of adapter was standards-based adapters (Figure 17). Basically, the adapters
provided access to multiple sources by using a standards-based APl (ANSI SQL-92).
According to Hammer and Timmerman, the adapters were less automated but more
successful when compared to plug and play adapters. The prerequisites for standards-

based adapters are standardized formats for data exchange.

39

. Table
b (answer to
saL - S .
e " query)
\

" P L e W

Figure 17. Standards-based adapters provide access to multiple sources by using
standards-based API (From Hammer and Timmerman, 2008).

3. Age of Desktop Systems

Software applications such as word processers and spreadsheets run on desktop
systems. These became popular and widely accepted because they met the business needs
and requirements as a productivity tool for working professionals. Basic IT was a
prerequisite skill for any office worker. Unlike servers which were housed in secured
server rooms, desktop systems are more prevalent. They operated as client end terminals
and are not as secure as servers. Desktop users stored information on the local machine.
Hence, relaxed controls on desktop machines could introduce security risks such as
compromising classified information transfer. Configuration management issues such as

using out-of-date documents was also possible.

4. Age of Internet

Web-based applications are often more successful than custom-connected
systems. This is because web-based applications enabled efficient search of large
amounts of information for specific documents and information of interest, mechanisms
for collaboration between individuals on different parts of a network, online shopping

purchases and remote technical support. On the other hand, web-based applications also

40

increased the complexity of integration. This is due to the increase in data types such as
text, audio, graphics and video. The boundaries of working groups had thus widened to
include customers, partners and even hackers. There was also increased security risk in
view of the vulnerabilities of open data and protocol standards such as XML and web

services invocation via HTTP bindings. Common security implications are important to

all web-based applications that are open standards compliant.

Enterprise Content Management (ECM) helps organizations keep track of
documents and provided an audit trail on the handling of each document. ECM had
improved to incorporate different types of content such as web pages, graphics, videos,
etc. Hence, ECM provides a means to manage and integrate different types of data, an

important capability for web-based applications.

Enterprise Information Integration (EIN) is the process of integrating information
by providing data abstraction to a large set of heterogeneous databases. Hence, the user
only saw a single interface. SOA established an elegant style and sound principles of
designing, managing and implementing business modules as services in a distributed
network. However, there was a need for middleware to realize the mediation and
execution within a runtime environment that correlated a user’s logical or business view

of the problem space with backend data sources. EIl may be one such enabler.

With metadata, users were empowered to make more informed decisions.
Through research and development, software integration was becaming more efficient
and secure. As software integration became a key competence within software industries,
vendors were becoming more aware of the importance of metadata strategies for software
integration. Thus the next challenge would be the need to assess the quality and

completeness of metadata and the amount of sharable metadata on the internet.

5. Code Generators for Integration

SOA and the success of many strategic applications were dependent upon an
enterprise approach to integration. There were considerations for code generators as a
preferred approach to conventional enterprise integration. Basically, this was because of

increased productivity which results in reduced cost. To elaborate: productivity gains

41

could be realized for code generator solutions in maintaining multiple runtimes, but with
performance degradation due to increased network traffic and heavy engine computation.
Secondly, productivity gains were realized when code generators were compared to hand-
coding in conventional enterprise integration. There were four criteria used for judging
code generators: extensibility with respect to data sources and functionality, degree to
which reuse and rapid change cycle were supported, ease of use, and acceptable

performance.

6. Current State of Integration Technology

XML-based applications are emerging. This is facilitated by a SOA-based
framework and infrastructure. WSA is one realization and web services are the enabler

for vendors to position their products as application service providers (ASP).

As integration technology continues to evolve and new capabilities emerge, it is
important to consider technology’s flexibility to adapt to future changes when a certain
integration technology solution is selected or developed. Choosing or developing
products with a strong metadata strategy can help to minimize the cost of adopting a
superior technology at a later time. There are three considerations in the selection of
metadata strategy: completeness of the metadata, its flexibility for query, and the

flexibility for the metadata to be read in another environment.

Industry analysts recommend organizations have an “integration competency
center” since integration is central to IT. Thus, with more funds directed at software
integration research and development, initiatives to accelerate the implementation of
more productive, usable and intelligent software-integration strategies and solutions will

be possible.

D. FUTURE INTEGRATION TECHNOLOGY

So what does the study of software integration trend leads us to? The importance
of metadata has been mentioned repeatedly through the evolution of integration
technology. The age of network systems has made deployment of software applications

and components on distributed, decentralized platforms feasible. This is a preferred

42

migration approach for legacy systems because they are typically constrained by the
resources owned by different agencies residing at different nodes in a distributed

network.

EAI also highlights the importance of data interfaces and integration
infrastructure to perform impact analysis. The complexity and necessity of adapter
technology cannot be neglected. Data-quality tools leverage heuristic algorithms and
Artificial Intelligence (Al) techniques to enhance data quality. The age of desktop also
highlights industrial awareness of the security risks from deploying rich software
applications on desktops. During the age of internet, Ell-based solutions are identified as
an enabler for mediating and correlating users’ logical view of the problem space with
backend data sources within an SOA environment. Given the large amount of
information flooding into the internet, ECM is necessary. There are also some
considerations of technology that can potentially increase the productivity of software
integration, one of which is code generators. In the current trend of integration
technology, open standard-based protocols and standards such as XML and web services

are gaining momentum as the preferred industrial implementation of SOA solutions.

Future software integration technology will be data-centric. Data refers to vendor-
specific metadata, data sources, content and business views of end users. Metadata may
not be sufficiently expressive. Thus, semantic web concepts are a superior approach to
express and represent data, entities and relationships. Data needs to be made available
and sharable in the network. How effectively this propagates depends on the policy
maker. Software integration technology is only a means to establish the infrastructure
which is necessary to facilitate sharing of information.

Data has to be portable and agreeable in a format recognizable by all
collaborating nodes within the network. Open standards such as XML will be widely
adopted by industries to ensure data interoperability. Data interoperability and scalability
will be independent of proprietary runtime environments, platforms and programming

languages.

43

Al planning and software agents are the key enablers for refining and enhancing
quality of data processing for end users by facilitating automation in a run-time

environment.

Security will continue to be the key focus to enable a heterogeneous and open
software infrastructure. Software integration technology needs to ensure confidentiality,
integrity and availability of data.

Reliable, scalable, flexible and adaptable middleware that can ensure
interoperability between rich metadata and software agents is the basis to realize the
future software integration technology. Software reuse will continue to be a major design
consideration of the future integration technology.

The future integration technology should also transcend and not be bounded by
any software paradigm. For example, the query and implementation of query will not be
dependent solely on relational databases. Relational database and query will still exist in
view of legacy systems. Both adaptation and standardization approaches have to work
together. Adaptation will be interim approach until recommended/approved
standardization sets in. A consistent and robust methodology and framework will need to

be established to ensure such a process is repeatable.

The development and management of future integration technology will be driven
by methodology. There will be continuous attempts to classify, generalize and structure
integration processes. The purpose of an integration methodology is to simplify a

complex issue so that it is repeatable and its behavior predictable.

The application of human factors and human computer interaction principles is
necessary to improve the usability of integration technology. It should also be part of
evaluation and test criteria to ensure software quality. Inspiration can be drawn from

cognitive science to enhance the usablility and intelligence of software architecture.

E. “SMART” INTEGRATION

The continual emphasis on realizing a usable and intelligent architecture will
eventually lead to the idea of smart integration. Smart integration is an emerging
methodology for software integration. It is about the future design and implementation of

44

software integration technologies. The architectural analysis will need to consider the
high-level design requirements and strategies for architecture usability and intelligence.
These will then be realized as use cases and functionalities. A consistent and repeatable
process that integrates and supports the use cases has to be established. As such, smart
integration is part of an integral software integration process that involves both humans
and technology. Finally, performance criteria used to evaluate integration processes and
technology will be clearly defined. The evaluation and feedbacks will be part of the smart

integration process.

At framework implementation, software integration should be managed and
executed autonomously by software agents. Adaptation code required to link different
software components together will be auto-generated. The associated unit test classes can
also be auto-generated. The end-user is required to manage and facilitate integration at
the business level. The constraints, rules and logic required to match make and adapt
various components are well defined and supported by state-of-the-art data modeling
techniques such as the semantic web concepts. End users are equipped with well designed
user interface and Al decision support tools. Hence, data can be efficiently and
effectively managed by end users. Low level coding, implementation, testing and
deployment can be undertaken by systems. As such, engineers may not be required to
perform hard core coding. Instead, the focus can be on the configuration of software

adaptation components.

F. THE IMPLICATION TO SOA SOLUTIONS
1. SOA Design Principles

SOA strategically aligned itself as the next trend in software integration
technology. There are eight categories of SOA design principles (Erl, 2008), as shown in
Figure 18. WSAIF will be usable and intelligent. It is a realization of SOA. WSAIF will
be an enabler for smart integration in the SOA paradigm. Principles that result in the
implementation of specific service design characteristics include standardized service
contract, service reusability, service autonomy, service statelessness and service
discovery. Principles that shape and regulate the implementation of design characteristics
include service loose coupling, service abstraction and service composability.

45

The purpose of the service contract is to ensure a consistent way to describe
service capabilities and overall purpose of the service. The key idea of service reusability
is for services to contain agnostic logic such that they can be reusable enterprise
resources. This will increase business agility, realize an agnostic service model and
service inventories. There are three types of planned reusability. Tactical reusability
requires immediate implementation of services that meet a critical requirement. Targeted
reusability refers to service implementation meeting immediate and near-future
requirements. Complete reusability refers to service implementation with a
complementary range of functionality. Service autonomy refers to the run-time and
design-time autonomy of a single service. Run-time autonomy refers to the control over
processing logic when the service is invoked. Design-time autonomy refers to the control
over making changes to the service over its lifetime. A service is designed to be stateless.
Having the service stateless greatly reduces the computational complexity in maintaining
state information. Hence, this maximizes service scalability and performance. Service
discovery helps to determine if a required business function is made available within the
service inventory. Service loose coupling refers to minimal dependency between a
service contract and consumers and between a service contract and its underlying
implementation. The motivation for service abstraction is to publish only necessary
information and avoid dissemination of redundant service information. The idea of
service composability is to match make or assemble different services. This establishes a

process to solve a larger problem.

46

implement a
standardized contract

" _ minimize dependencies

implement generic and

reusable logic and contract
e

’ minimize the availability
(of meta information

(‘ maximize composability

implement independent
functional boundary and
runtime environment

implement adaptive and
state management-free logic

implement communicative
meta information

Figure 18. There are eight categories of SOA design principles (From Erl, 2008).
2. Envisioned WSAIF — A Realization of SOA

The envisioned Web Services Architecture Intelligent Framework (WSAIF) will
be usable and intelligent. WSAIF is a realization of SOA. It handles the interoperability,
facilitation, implementation and methodology for integrating the various SOA-based
open standards. Interoperability refers to the well-defined component interfaces, model
representation and protocol for cross-component interaction. Interoperability also takes
into account a flexible approach to adapt SOA-related standards to WSAIF. Facilitation is
the conceptual and logical sequence/order how the various WSAIF components work
with each other. Implementation realizes and manages the run-time environment. It
controls the deployment, invocation and recovery of the components within the run-time

environment. Most importantly, the WSAIF needs a robust and consistent methodology

47

to integrate and hold the components together. There are five major steps to the
methodology: architectural analysis; identifying key areas of functionality; definition of
strategy and process; planning for auditability and reuse; and criteria for evaluating

integration technology (Hammer and Timmerman, 2008).

WSAIF will provide an Object Oriented abstraction that sits between the
component interfaces and SOA-based open standards. WSAIF will be able to interoperate
and perform tasks implemented by different open standards. Hence, WSAIF will be
adaptable to SOA variations. For example, WSAIF can augment the process ontology
defined in OWL-S with the adaptation rules defined in a WSBPEL assign element. The
abstraction will also make the SOA variations transparent to the user of WSAIF. Hence,

to the user, WSAIF is generic, flexible and usable.

WSAIF will be intelligent. It will exhibit autonomous behavior such as self-
integration of web services, self-orchestration of business workflows and self-healing
when web services deployment status changes. In other words, it will dynamically put

together a comprehensive set of tools and data for a specific purpose and domain.

G. ENVISIONED WEB SERVICES ARCHITECTURE INTELLIGENT
FRAMEWORK (WSAIF)

WSAIF needs to consider semantic web services architecture as a high level
functional and architecture requirement (see Figure 19). This includes service discovery,
service engagement (service contracting and negotiation), enactment and engagement
(process monitoring, failure handling, dynamic composition, etc), community support

services (common and reusable services) and quality of service.

1. WSAIF High Level Functional and Architecture Requirements

Service discovery — This high level functional requirement includes providers
describing the identifiers, capabilities, queries, constraints, behavior, supported functions
and abstract characterizations of offered services. Abstract characterizations of services
are required for matchmaking purposes. Matchmakers compare the description of queries,
capabilities, constraints and supported functions. Requesters verify that the discovered

48

services meet the precondition requirement before using them. Architecture requirements

include protocols for advertising and service discovery purposes.

Service engagement — This high level functional requirement includes the
formulation of service requests, the basis for agreement, contracting preliminaries and
contracting negotiation. Architecture requirements include protocols for negotiation and

services to manage negotiation and auditing.

Service enactment and engagement — This high level functional requirement
includes interpretation and translation of responses when the requester and provider use
different ontologies for communication. With a good basis for choreography,
interpretation and execution, the capability will result in higher quality dynamic service
composition. The requirement for mediating and delegating processes that are composed
is also important. Coupled with the mediating process is the process for status
monitoring. In the event that an abnormality occurs, a notification is triggered. Service
failure handling and compensation are required if the processes run into exceptions.
There is also the need to resolve disputes and ensure compliance for services involving
third-party tools. Requirements to ensure audit tracking, explanation, security and
concurrency controls are important for SOA deployed in a multi-agency environment
where providers and requesters for services can assume different roles and access.
Architecture requirements include services for process mediation, scheduling, execution
and composition. Status-logging and policy monitoring are also part of the architecture

requirements.

Community Support Services — This high level functional requirement includes
services for ontology lookup, mapping, version control, security, group membership, trust
reasoning, community based preference and reliability reporting. It is also important to

consider policy, protocol and lifecycle management services.

The quality of service (QoS) level agreement has to be defined. Considerations
for QoS include deadlines, accuracy and cost. QoS has implications regarding how
services are advertised, topics for negotiation processes, etc. There should be a means to

monitor QoS and control the services accordingly.

49

Ciiants
Fl-hlsllad l'"

Client -‘ Ser\rlca
=
achievement process -© provision procass
¥y L

Cliant gml
deser |pt|on reformulation

’
¢ ,‘
‘ ’
‘ ’

; Candidate Candidate Sarvice selection 4;1 Selectgd Ll Service
! servica :t'iszmrery_" sarvices and engagement |, provider and anactment
) 2 agreament
! L\._{ 1 I:'I
J In.mractlo.ns ! ‘, ! Manitoring
Y with servica T ! and execution
P registries . i ! of service
W £ Magatiation with i
W Abstract Service candidate services, ! #iin Sarviee Termination
\ charactarizations of discovary commitmeant to U initiation [manitering] and
. candidate service query protocel sarvice agreement : compensation
1 I
- } !
Charactarization Service contract Jervice
-=»{_ of desired service negotiation | 7| 2Ereement
a5 a requast >
_ -

Figure 19. Semantic web service architecture high level functional and architecture
requirements (From Burstein et al., 2005).

Client (green) and service provider (blue) goal descriptions (hexagons) drive the
three main phases of interaction (discovery, engagement, and enactment). At the lower
level, these goals are communicated during message exchanges utilizing the protocols

(green boxes) that follow general, phase-specific patterns (Bursteinet al., 2005).

2. WSAIF Components

With the design considerations and capabilities mentioned above, WSAIF will be
sufficiently intelligent to filter, identify and notify relevant, reliable and useful
information to the user. Thus, WSAIF is usable from knowledge management

perspective.

To realize the functional and architecture requirements, components of WSAIF
include (Figure 20): orchestrator (elaborated in this paper in Section 6); matchmaker (to
facilitate autonomous match-making of web services); agents (applied heuristic search for
the right web services); adaptor (to address the heterogeneity problem between two web
methods); communication (supporting asynchronous and synchronous processes);

50

security; choreography; and user interface. The WSAIF manager component is the main
controller for the architecture framework. Each of WSAIF components will be elaborated

below.

WSAIF Orchestrator — The purpose of the Orchestrator is to establish a
comprehensive and consistent representation to model composite processes or workflows.
The software framework establishes an abstraction between a common set of APIs that
ensure interoperability between WSAIF components and the various open standards for

modeling business processes such as OWL-S and WSBPEL.

WSAIF Matchmaker — The purpose of WSAIF Matchmaker is to facilitate the

execution and search for suitable/matching services.

WSAIF Agents — The Agents component implements the various Al search
algorithms. WSAIF agents assess the process scenario and execute the most suitable Al

search algorithm. It recommends suitable services.

WSAIF Choreography — The Choreography component specifies the pattern or
sequence of assets for a particular service. This information is an input to the WSAIF

Matchmaker. The framework abstraction incorporates open standards such as WS-CDL..

WSAIF Adaptor — The Adaptor component handles the syntactic and semantic
mismatches between parameters of atomic processes which form part of a composite
process. The translation logic that “glues” two atomic processes is expressed in XSLT.

WSAIF Communication — The Communication component implements and
supports synchronous and asynchronous communication between atomic processes.
Synchronous communication simply means all parties involved in a communication have
to be present at the same time. It is direct. Thus, a request invoked by a party would
expect and wait for a response from the receiving party. An example of synchronous
communication is chat. Asynchronous communication does not require all parties to be
present at the same time. Thus, a request invoked by a party need not wait for a reply. An
example of asynchronous communication is email. WSAIF Communication should
support both wired and tactical wireless environment. Design strategies for overcoming

limited bandwidth include incorporating Efficient XML Interchange (EXI) and lazy

51

loading (i.e,. load in batch and only by need basis). Design strategies for overcoming

limited connectivity include using robust asynchronous messaging framework.

WSAIF Security — This is an important component because services are deployed
in a multiple-agencies environment. Providers and consumers of services can belong to
different agencies. Each of them will have a specific role and authenticated resources.
Hence, access control, authorization and authentication of web services are important. It
is also important that the messages delivered from one agency to another need to preserve
confidentiality and integrity. Thus, SSL and open standards such as XML-Security which
includes XML encryption and XML signature are important realizations of such security

design requirements.

WSAIF User Interface — The User Interface component works with other
components and provides meaningful display of useful and important information. It also
provides an intuitive means for users to employ the various functionalities in WSAIF.
The WSAIF User Interface is flexible. An end user is able to configure and customize the
specific Ul components to be used for his dashboard. A Ul mediator will synchronize and
facilitate updates on dependent Ul components when the information on one Ul
component changes. The WSAIF User interface will be built on a rich client platform.
This is necessary to support more complex and dynamic Ul interactions and controls.
Furthermore, rich clients are able to cache and manage larger batches of information.
Thus, it has the benefit to retain functionality on the client even when the network

connection drops.

WSAIF Manager — The WSAIF Manager is the main/key controller for the
architecture framework. WSAIF Manager understands the current process status and the
abstract requests from WSAIF Orchestrator. WSAIF Manager then triggers WSAIF
Matchmaker which takes in the input of WSAIF Choreography before formulating a
detailed matchmaking request. WSAIF Matchmaker then sends the request to WSAIF
Agent for execution. WSAIF Agent assesses the matchmaking request and search
scenario. It selects the most suitable search algorithm, generates a search agent and
performs search. WSAIF Agent then returns recommended services to WSAIF Manager.

WSAIF Manager then sends the recommendation to WSAIF Ul which then displays the

52

result intuitively to the end users. End users interact with WSAIF Ul and any updated
information on business processes is sent to WSAIF Orchestrator.

WSAIF Manager
WSAIF WSAIF WSAIF WSAIF WSAIF WSAIF (I‘G‘:MSA:)I; - WSAIEUI
Orchestrator =~ Adaptor Agent Comms Security Matchmaker SEEEIRY :

= ==
WSBPEL

s S s &
Other SOA
WSDL WS-CDL ks

Figure 20. The envisioned WSAIF and its architecture components.

H. SUMMARY

The chapter has discussed the evolution of software integration technologies.
Understanding the trends and associated failures or successes helps in the speculation of a
future integration technology which is usable and intelligent. The emphasis on such
attributes in future integration technology will eventually lead to smart integration
approaches. The smart integration approach will be supported by a well-defined and
robust methodology. To put it simply, future software integration approaches will no
longer require software engineers to manually produce adapter code to ensure two
software components interoperate. Rather, the approach is to design and implement user-
friendly executive dashboard, configuration tools and intelligence into the software
architecture so that software components can integrate without the need for hand-coding.
In this thesis, SOA is used as the architecture paradigm to realize the concept. SOA
design principles were reviewed in this chapter. The design principles will be the key

design considerations for WSAIF, resulting in the high level functional and architecture

53

requirements based on its association and relevance to semantic web service architecture.
The chapter concluded with a detailed description of WSAIF software components

required to address the functional and architecture requirements.

54

IV. SAVAGE WEB SERVICES

A. INTRODUCTION

This chapter first addresses the various implementation approaches for SAVAGE
web services. The use cases are then discussed. The UML component diagram which
realizes the use cases is elaborated. This is followed up by the details of class hierarchy
for each component. The details of class object sequence interactions for each use case is
also elaborated. The chapter concludes with description of the design approach to extend

SAVAGE web services to incorporate new web methods.

B. USE CASES

findDESModel

- <=ysager>

=<usagess — — _
~| getDESModel
<=usage==
findX3DModel

Client -

<< sage==

il
getX3DModel

Figure 21. SAVAGE web services use case diagram in UML shows four use cases.
The user uses the client to invoke findX3DModel, getX3DModel, findDESModel
and getDESModel web methods.

There are two web services implemented for SAVAGE, namely X3DWebService
and DESWebService. The web services are implemented in Java. “Client” refers to an
external Java program which can run on a different machine. “Server” refers to the
machine on which SAVAGE Web Services are deployed. For X3DWebService, the

55

implemented web methods are findX3DModel and getX3DModel. For DESWebService,
the implemented web methods are findDESModel and getDESModel web methods. The

technical use case specification for each of the web methods are as follows:

1. findX3DModel Web Method Use Case Specification

The purpose of the findX3DModel web method is to find a list of matching X3D
models given search term(s). The client invokes web method findX3DModel with
parameter searchTerm. Parameter searchTerm is the keyword(s) of interest given by
users. the client invokes the findX3DModel web method. The server receives the web
service request from the client. The server iterates through page elements in the
SAVAGE catalog and performs a string match between searchTerm and the content of
name, title and description attributes. For the content of the description attribute, words
are first tokenized before each tokenized word is compared with searchTerm. The server
returns a list of matching X3D names and their associated URLs in XML format back to

the client.

2. getX3DModel Web M ethod Use Case Specification

The purpose of the getX3DModel web method is to retrieve an X3D model file
given its URL. The client invokes web method getX3DModel with parameter URL. URL
refers to the unique resource locator for the X3D model file on the SAVAGE server. The
server receives the web service request from the client. The server goes to a specific sub-
directory as indicated by the URL. The server reads the X3D model file into a string and

returns the content to the client.

3. findDESModel Web Method Use Case Specification

The purpose of the findDESModel web method is to find the matching DES
behavior model given an X3D visualization model. The client invokes web method
findDESModel with parameter x3dURL. The server receives the web service request from
the client. The server iterates through page elements in the SAVAGE catalog and if there
is a SMAL element defined (specifically BehaviorParameterSet child element), the
server will retrieve information from the agent and URL attributes. This information is

then returned to the client in XML format.
56

4. getDESModel Web Method Use Case Specification

The purpose of the getDESModel web method is to retrieve the DES behavior
model in XML format from the SAVAGE repository. The client invokes web method
getDESModel with parameter desURL. desURL will indicate the specific subdirectory
where the DES model resides in the SAVAGE repository. The server receives the client’s
web service request, retrieves the DES model from the SAVAGE repository and returns
the DES model to the client.

C. DESIGN CONSIDERATIONS

As discussed in Section 2, there are five key architecture considerations; namely,
reliability, performance, scalability, security and maintainability. The scope and defined
quality of SAVAGE web services design will be based on the five architecture

considerations.

SAVAGE web services have to be maintainable. There will be distinct
architecture layers (implemented via Java packages) to contain business logic and model

related classes.

There is a need to consider possible future enhancements to include new web
methods and associated business logic implementation. Hence, SAVAGE web services
need to be extensible. Web service classes should be distinct in their roles and the name
of web method should well describe its functions. The Strategy pattern is selected to
create the layer of abstraction between the web service classes and the implemented
strategy for the associated web method. This will decouple and enhance extensibility for

the implementation of web methods and their associated business strategies.

Consumers of web services can be external parties within the collaboration
network. Hence, as part of the maintainability consideration, it is important to ensure an
intuitive way to assess the SAVAGE web services. No special XML format is required
from consumers. Web services are invoked with simple input types. For example, the
findX3DModel web method should take in the search term as the input string. It is not

necessary for the input string to conform to any specific XML format in this case.

57

This is an experimentation or demonstration setup, hence SAVAGE web services
are considered reliable if the invocations do not crash the system given the following

conditions:
1. Small number of concurrent users (i.e., less than 5 users)
2. Support short demonstration period (i.e., less than 2 hours)

Thus, given the above design considerations, an enterprise solution which requires

clustering of web services on multiple machines is not necessary.

The performance of the SAVAGE web services should be acceptable.
Synchronous invocation of web services should be less than 5 seconds. If the
synchronous web services call requires longer processing time, visual feedback should be

implemented at the application user interface.

The scope of the SAVAGE web service implementation should include security
consideration for communication confidentiality. Thus, transport level encryption such as

SSL is necessary.

D. IMPLEMENTATION PROCESS

This section describes the development process for SAVAGE web services.
Forward engineering using NetBeans provides the capability for NetBeans to auto-
generate classes, attributes and methods (without business logic implementation) from
UML diagrams. Reverse engineering (Figure 21) leverages available code to generate
UML components, which are the basic building blocks for UML diagrams. NetBeans and
JAX-WS auto-generate WSDL, schema and Java classes for the web methods. To
establish web services operation hosted on a server, use the “new->web service” option
in NetBeans. For client connectivity to web services, use the “new->web service client”.
As such, establishing a web services connection can be done easily in NetBeans.
Developer simply performs “drag and drop” operation on the web services client
connection instances into Java main class or JSP code. Alternatively, the developer first
develops WSDL using an XML editor such as XML-SPY. Then, WSDL can be imported
into NetBeans using the “new->Web Services from WSDL” option. NetBeans and JAX-
WS then read in information such as operations, endpoints and bindings from WSDL and

58

auto-generate schema and Java classes for the web methods. The developer can then use
NetBeans to perform forward or reverse engineering to create web services after
importing WSDL.

Start Development

Use
NetBeans to

Use NetBean create Weh
to create Jav Application
Client/JSP

Use
NetBeans to
create Weh

Service
wrapper

y

Fills in web
I methods name,
input and output

NetBeans and
Use NetBeans|
params

JI_D(V\NS auto generate | _ to create Web £

java classes for web G i
methods
T !
v

NetBeans and JAX-WS to
auto generate java
classes, WSDL and

Schema

Use NetBeans to drag and
drop web service |
connection into main =
EloasiS B ot ms D e Use NetBeans to
e : S lagic for each web = auto generate UML —
method components

Fail
Compile and deploy o
Devel it Tomcat
Server

Test Web Senvices on Development

L — ¢

Pass

W
Deploy on
Production/SAVAGE
Tomcat Server
Fail

Test Weh Services on Production

55

bl
- w

Development Completed

@<=

Figure 22. Reverse engineering leverages available code and generates UML
components. NetBeans and JAX-WS auto-generate WSDL, schema and Java
classes for the web methods.

In the reverse engineering process, WSDL, Schema and Java classes for web

service connectivity are auto-generated by NetBeans and JAX-WS.
59

Start Development

L}
|

Use
NetBeans t NetBeans t
create Web

create .J
Client/JSP Application

Use

Use NetBean:

to create Wel
Service
wrapper

HetBeans and

JAX-WS auto Use HetBeans to

generate java - —| create Web Service
classes for web Client

methods >

NetBeans and JAX-WS
to auto generate java
classes, WSDL and

sghema_

l

Use NetBeans to createJ

UML components and
draw Diagrams for web
services implementatio

Use NetBeans to dra,
and drop web servic
connection into main

classiJSP .

java source (eg. class,
attributes and methods) i

NetBeans auto generate |
web application project

Code business
—2 logic within
nenergte._d source

Fegil \ Compile and
deploy on

Development

Tomecat Server

N o

|
Test Webh Services on Developmeant

Palss

W

Deploy on
Production/SAVAGE
Tomcat Server

Test Weh Services on Production

(?; —

Paz==

Development Completed

©

Figure 23.

implementation) from UML diagrams.

60

Forward engineering using NetBeans provides the capability for NetBeans
to auto-generate classes, attributes and methods (without business logic

For the forward engineering process, WSDL, schema, and Java classes for web
service connectivity are auto-generated by NetBeans and JAX-WS. The web services
implementation, consisting of Java classes with their class hierarchy, class attributes and
methods (without business logic implementation), can be auto-generated from the UML

diagrams. Details are described in the UML activity diagram shown in Figure 22.

WSDL can be configured separately by using an XML editor. The pre-configured
WSDL can be imported into NetBeans by selecting option “new->web service from
WSDL”. The developer can then perform the remaining steps in the forward or reverse
engineering processes using NetBeans. Details are illustrated in the UML activity
diagrams in Figures 22 and 23.

61

LEa NaTHsuny
to c Web

~_NetBeans import WSD
‘NetBeans and JAX WS a

Use NetBeans to drag
~and drop web service|

TestWehb Services on Development

TestWeh Services on Production

Fass

Cevelopment completed

@

Figure 24. Forward engineering using NetBeans, with WSDL configured separately
and imported into NetBeans.
62

Use
NetBeans tq
create Web|
Application|

Use NetBeans to

NetBeans and
JAX-WS auto Use NetBeans
generates java to create weh
classes for web sernvices client

NetBeans import WSDL.
NetBeans and JAX-WS
auto generate java
classes and Schema

Use NetBeans to
drag and drop web T
service connection

into main class/JSP

]

. Codes busines
e o — —=| logic for each -
I N web method

Use NetBeans to draw
UML Diagrams. UML
components are basic
building blocks

auto generate UM =

Use NetBeans to
components

™~ . Compile and deploy
Fail e onDevelopment |=—— —
; Tomcat Server
‘ > ’.’:.
S
Test Web Services on Development
i

Pags

Deploy on
Production/Savage|

Tomcat Server

Test Weh Services on Production

Pazs

Developmen:i Completed

Figure 25. Reverse engineering using NetBeans, with WSDL configured separately

and imported into NetBeans.

63

The development process used for the development of SAVAGE web services is
reverse engineering using NetBeans. JAX-WS auto-generates WSDL. The reason why
this approach is chosen is because Java source code is developed first. The NetBeans

UML models are reconstructed from the source code.

To create a project using NetBeans UML, use the NetBeans create project wizard.
Select category UML and then Java-Platform Model. NetBeans will create a UML model

in Java.

E. DESIGN COMPONENTS

X3DWSMethod

|:| _ executeStrategy
. -|WSController WSModel

| _readSavageCatalog N

DESWSMethod] — ekecuteStrategy

Figure 26. SAVAGE web services component diagram in UML. The components are
the realization of the use cases.

D

There are four components in the demonstration design, as shown in Figure 26.
Each component has its distinct function. The components are the realization of the use
cases and design considerations. Each component is a Java package. The X3DWSMethod
and DESWSMethod packages contain web methods for X3D and DES web services,
respectively. The WSController package contains classes that implement the various
business rules and logic for the web methods. The WSModel package implements the
various entities or models. These entities are the basis for the business rules in
WSController to work on. Class methods in X3DWSMethod and DESWSMethod do not
use the class methods in WSModel directly. Instead, WSController plays the role of
mediator between the various web methods and the common entity classes. This design
approach facilitates component reuse such as WSModel being a common entity used by

different web services.

64

F. DETAILED DESIGN

1. UML Class Diagram

Figure 27 shows the detailed design of classes in the WSController package.

W5Strategy
{ From WSCanelber |

e

Caananr
Dutic Sy euscuaslpacncyy |

DESFindStrategy

[Fram WSConkrolier |

X3DFindStrategy

{ From WhCorfroler |

| Azspier
| prvans Sng ingutse
| privan Sarieg sumpusir

r—
vl STEND NpUSY

private Sting eputsy

e
| pusi DESFInEsIatgy S0 input)

priva veid exracfienanioe] Nods note

puils DESTInziuatsgy prDESTInaSratagy |

puie vkt SeDESFINTIrae e DESF indSatedy vl)

pUbl WEUBIEy gINELINRY)

publc void selNELERY{ WELiNkdy val)

publc WESinghvton getWSSingeion(|

pusl Wl 3esGSimghaion| WiSingheton vai)
[—

pusist Gtng arscutaOparatenl |

incats Dot ¢ talagDiae

4 MaradChid{ Hoda noda)
srivale vobd awarchPage] o comariiods |

pubiic WELNRY gasiSLbRY |

FubOC ol SARAEUMAT WU)

pubic WESIngitlen QIWSSngien |

public voed weINE Singletor WS Sngieton wal§

Chwators Rwtedend From ISty
publle Saing execuaOperabon] |

‘WaSingleton
{ From WaCanote |

e

SR T ERNP ST e b CRAAVACE P b i A TN S sl

JDExamp webJd ot

XIDGetStrategy

{ FresnWaConmobet |

DESGetStrategy

[Fram WGenbeir |

prvate Bng ipul

=
ptvate $nng inputt

Comertons
potibe XIDGesStrane g Sing ingut |
pabic $3ing getnpatir] |

Dabik vood SAENUISYT SNQ MpUSY)
plbile WL QeaNELIRY])

i void seRVEUNN WELSIY val)
pabiic WiSingleton qetWSBingiwion] |
ptile void Bt

Cewatons
puble DESGHISTaIRg Stung input)
putlic fitng geirgustal |

DU ¥Hd SANOUTIE(TG INGUTEY)
Ul WELSS gt)

public waid solNELII{ WELINMy val)
public WESingiwlon petSSnglelon |

Covanans eaviest Fron Wi ey
pbilc NG aCuBsCparaton| |

1}

publc g

Wasingleion val |

Coeunan Srcetnnd Fra A5 Immey
public 5t dssute0paraion |

L et enovstDocumentyMDTSNP S5 Thi sty

peats WiSiegiian| |

ki Bting geitstangFiePaty)

publie vold SHIC.

[ee—

public Docussart geiCatalogDscument |

pable S¥ing gtCatalosistiama(|
b e IagtFan |
pebihc S¥ing gesknMsdelPam |

Figure 27.

Class diagram in UML.

WS Utiity

| From WaCanmole |

-

Covmans
b Sing getConeresfrom el Saing fheSy

SAVAGE web services classes implemented in WSController component.

The Strategy pattern is a type of behavioral pattern. It comprises a set of classes,

where each class implements a particular behavior. These implemented behaviors can be

flexibly applied to the model, changing the way the application behaves on the fly. For

SAVAGE web services implementation, the Strategy pattern is used to implement the

business logic of each web method. Thus, there is one implemented strategy class
corresponding to each web method. They are X3DFindStrategy, X3DGetStrategy,
DESFindStrategy and DESGetStrategy. WSStrategy is the abstract class that implements

65

abstract method executeOperation. The specific implementation of executeOperation is
defined in the extended strategy classes. The context classes are X3DWebService and
DESWebService in X3DWSMethod and DESWSMethod accordingly. The context classes
use the strategies by invoking the abstract method executeOperation. executeOperation
returns a string and the output (X3D model, DES model, etc) will depend on the
implemented executeOperation defined in the extended strategy classes.

The extended strategy classes use WSSingleton. Singleton is a type of creational
pattern. The singleton class creates and maintains the global static/single instance of
class. Other classes use the singleton class to retrieve the global instance. For Savage web
services, the static classes instances maintained by Singleton are catalogDocument (to
constructed the Document Object Model (DOM) model for the SAVAGE catalog XML
file), catalogFilePath (specific file directory where the SAVAGE catalog file is stored),
catalogFileName (file name for the SAVAGE catalog file), savageFilePath (specific file
directory for the root directory of the SAVAGE X3D repository; the precise
location/subdirectory of a specific X3D model resides in its associated X3D URL) and
visualModelPath (specific file directory for the root directory for the SAVAGE DES
repository; the subdirectory resides in DES URL).

WSUtility basically contains reusable utility operations such as
getContentFromFile.

66

WSCatalogReader
{ From WsMadel }

Attributes
private Document document

private String catalogFileName

Operations

public WSCatalogReader(String catalogFile)

public void savageCatalogConstruct()

public String getCatalogFileMName()

public void setCatalogFileName(String catalogFileMame)
public Document getDocument()

public void setDocument{ Document document)

X3DFindResultEntity
{ From WSModel }

Attributes

Qperations

public X3DFindResultEntity(HashMap<String, String> map)
public HashMap<String, String> getResultSet()
public void setResultSet{ HashMap<String, String> resultSet)

DESFindResultEntity
{ From WSModel }

Attribites

Cperations

public DESFindResultEntity(HashMap<String, String> map)
public HashMap<String, String> getResultSet()
public void setResultSet(HashMap<String, String> resultSet)

Figure 28.

SAVAGE web services classes implemented in the WSModel component.

Class diagram in UML.

There are three classes in the WSModel package (Figure 28). They are
WSCatalogReader, X3DFindResultEntity and DESFindResultEntity. WSCatalogReader
reads in and builds DOM for the SAVAGE catalog file. X3DFindResultEntity class
encapsulates the result (list of X3D URLs and names) computed by X3DFindStrategy in

HashMap. X3DFindResultEntity will be parsed into XML format before returning to the

findX3DModel web method. Likewise, DESFindResultEntity class is used to encapsulate
the result (list of DES agents and URLs) from DESFindStrategy.

67

X3DWebService
{ From ¥3DWSMethod }

Attributes

Operations

public String findX3DMaodel{ String searchTerm)
private String executeWehSewiceCOperation(WSStrategy specificStrategy)
public String getX3DMadel(String url)

DESWebService
{ Fram DESWSMethod }

Attributes

Operations

public String findDESModel{ String x3dUrl)
public String getDESModel(String desUrl)
private String execute\WebSeniceOperation(WSStrategy specificStrategy)

Figure 29. SAVAGE web services classes implemented in X3DWSMethod and
DESWSMethod components. Class diagram in UML.

X3DWebService implements web method findX3DModel which takes in
searchTerm as parameter and returns a list of X3D URLs and names in XML.
getX3DModel is the implemented web method to retrieve an X3D model given X3D
URL. DESWebService implements web method getDESModel and findDESModel.
ExecuteWebServiceOperation is a generic private method and its parameter is the abstract
class WSStrategy. In other words, it can be used by the different web methods. Its role is

to facilitate the execution of specific strategy passed in by the web methods.

2. UML Sequence Diagram

The UML sequence diagram in Figure 30 shows the sequence of interactions
among different class instances. The detailed interactions between classes can be

complicated, hence it is important to capture and focus on the essential class interactions.

68

- TavaCiient - X3DWebService - X3DFindStrategy - WSSingleton ‘ :WSCatangReader| ‘ :X3DFindResuItEntity| ‘ :Marshaller‘
|

' find¥a0Nodel | |

\ | \
H_ executm?t?%g;\/\ceOperat\nn ‘ ‘ ‘ ‘ ‘
& :
Ii | 3 execute Operation | ‘ | ‘ ‘
b s *“;'_g_etCata\ngDncument e SR | | |
H 33 i | ! savageCatalog UHSUUEI_H ‘ ‘
R 18 b !
B 1 ! n 0 t ‘ ‘
b 18 B Dacument b PR =5
i i ltcrig ™ | | |
| i | | | |
| i
{ it e | | | |
i 10 1
| 3 1§ Sgﬁthscriptwun | \ | |
| 1% * \ \ \ \
| i
1 \ | | |
§ { | | | |
§ 1 | \ \ \
3 i 3 i i newXSDFdeesu\tEntM | |
1 1%
& 1§ 1)
b 1t b |l -X-S-DF'-”F‘RE-SU-“-E-"-WW-a‘fs-h-a-l __________________________ ‘ }
1 i 1B 1 E— ‘ —n
1 it | | |
H “ P String e}
| M
., _________ Sting_______| 1 ‘
U_‘ : String C"“"

Figure 30. SAVAGE web services sequence diagram in UML for findX3DModel web
method.

JavaClient invokes findX3DModel web method. findX3DModel performs
executeWebServiceOperation, which then invokes executeOperation. X3DFindStrategy
getCatalogDocument from WSSingleton. WSSingleton executes savageCatalogConstruct
if the DOM for the SAVAGE catalog is not constructed. X3DFindStrategy will then
iterate through the nodes in DOM. When it encounters page construct, it performs
searchPage which does a string comparison between searchTerm and the contents of
name and title attributes. searchPage also invokes searchDescription. SearchDescription
tokenizes the description into keywords. Each keyword is then compared to searchTerm
to identify matches. X3DFindEntity is constructed to store the list of relevant X3D URLSs
and names. X3DFindStrategy then marshala X3DFindEntity into an XML String via
Marshaller. This XML String is returned to X3DWebService before it is returned to
JavaClient via the findX3DModel web method.

69

: JavaClient : X3DWebService : X3DGetStrategy : WSSingleton : WSUtility

‘,-‘ get<30Model |

| o) | | }

| executsWBhServiceOperation

| "a ‘ ‘ ‘
1

i | - executeOperation h‘ | |
1] —

i ; ; i —— getSavagePath _,.‘ ‘

& i .

& b ! i

: i 3 i String] |

b | b ‘ |
1

| - \ \

o i

o \ |

& o

X b ! | ‘

B '

| ¥ getContentsFromFile !

i i | S — \ ———

: i B i Strmb

| R - String o R - |11 S |

| .

L_l‘ String . _Laiv'

Figure 31. SAVAGE web services sequence diagram in UML for getX3DModel web
method.

Figure 31 shows the UML sequence diagram for the getX3DModel web method.
JavaClient invokes getX3DModel web method with X3D URL as the input parameter.
After the invocation of executeOperation, X3DGetStrategy invokes getSavagePath from
WSSingleton. getSavagePath returns the root directory of the SAVAGE X3D repository.
The specific location and name of the X3D model can be extracted from the X3D URL.
X3DGetStrategy then calls getContentsFromFile and the X3D model is returned to
JavaClient via X3DWebService.

70

: JavaClient [: DESwebservice | : DESFindStrategy [: Wssingleton [“wsc | [:DEsFi IHEntity [- marshalter

findDIE SModel -l
e ..ne'—'?nfaer\-':!:)nerat-:-n
b o

f

executeOperation

TR

E
| sarva ruct

E H "
¥ : ’? f
£ t i i
3 ; Y Docume: b
E: !
g .
i !
i :
A |
ki k! i
§ i g Child
B! M -
¥ ki -
B £] fois
H 3 5
B! 1 g |
i | [t
E | é racifeha
1 5 Hr
§ i {1
H k! bEn..
B k! | L
g : forar®
é LJI new DESFindResultEntty
b & %‘ DESFindResulEntty
¥ ¥ 3 .
£ ! k:
b ki DTS, g
3 1 , !
1 X
B
| 45

Figure 32. SAVAGE web services sequence diagram in UML for findDESModel web
method.

JavaClient invokes the findDESModel web method with X3D URL as the input
parameter (Figure 32). Upon execution of executeOperation, DESFindStrategy invokes
getCatalogDocument (SAVAGE catalog in DOM) from WSSingleton. DESFindStrategy
iterates across the DOM. For each page element, DESFindStrategy performs the isX3D
check. isX3D does a string comparison between the input parameter of the findDESModel
web method and the URL attribute of the page construct. If the X3D URL matches, it
calls extractBehavior from the BehaviorParameterSet element. extractBehavior reads the
content from agent and URL attributes from the SimulationAgent element.
DESFindStrategy instantiates DESFindResultEntity to store the list of agent and DES
URLSs in a class attribute of type HashMap. DESFindResultEntity is marshaled into XML

before returning to JavaClient via the findDESModel web method.

71

: JavaClient : DESWebService : DESGetStrategy : WSSingleton : WSUtility
| \ |
F. | |

getDesModel | |
! executeVVﬁhS%rviceOperatinn ‘ |
| bt
i | 1 executeOperation __| ‘ |
| B = getviskitModelPath
h -
| | |
|
;| | by A Sting__________& |
1 i \ |
b !
i £ | |
1
| ¥ | |
N -
h
i ' i ! getCDnten{smeFHe _,,.l
| ¥ \
E B String
b ! i L L L e
i | BT swng] |
|
L —

Figure 33. SAVAGE web services sequence diagram in UML for getDESModel web
method.

JavaClient invokes the getDESModel web method with DES URL as the input
parameter (Figure 33). Upon executeOperation, DESGetStrategy triggers
getViskitModelPath, which returns the Viskit model root directory. The specific sub-
directory and the name of the DES model file can be extracted from DES URL.
DESGetStrategy calls WSUTtility method getContentFromFile to read the DES model file
from the SAVAGE Viskit repository. The DES model is then returned to JavaClient via
the getDesModel web method.

3. SAVAGE WSDL

The Java API for XML Web Services (JAX-WS) generates WSDL files for

SAVAGE web services. The implemented Java web method is in class X3DWebService.

72

2 savAGEwWebServices aal L ;
- o web Pages g AWekl

. =+l Web Services a5 pukil:

i[9 DESwebSel Open

+ @, Configuration F Refresh Service

. -llg Server Resourg

i {5 Source Package Add Operation..,

+ {5 Test Packages

+ & Libraries TestWeb Service

;e Tt Edit Web Service Attributes

- SAVAGEWebServicy

B &P Savage/sclient Configure Handlers...

[E- 9 TestCastorapplicat]

+|__|*'—“_'I kectMLProject Generate and Copy WEDL..,

'+@- =mppClient

Delete Delete |

iE X3DWebService.java - H: Properties

Figure 34. Test web service using NetBeans.

To view the WSDL file, simply right click “X3DWebService” under the Web

Services source directory and select “Test Web Service” (see Figure 34).

73 Web Services - Windows Intemet Explorer

Al £ | httpifflocathost:2090/SAVAGEWebSence sH30Web Service

W \gWebSeNices

Web Services

Endpoimt Information

Address: hitp:/locathost: 3090/S AV AGEWeb Service s 33D WebService
WsDL: hitp/flocalhost 309073 AVAGEWebSermces 23D WebService Twsdl
Implementation class: X3DW3Method XZDWebSerce

Service Name: {hitp/33DWSMethod/} 3D WebService Service
Port Mame: {hitp:E3DWSMethod '} 53D WebZerncePort

Figure 35. Web browser displays hyperlink to the X3DWebService WSDL file.

The endpoint of the web service will be displayed on the web browser. The
address of X3DWebService in the development environment is
http://localhost:9090/SAVAGEWebServices/X3DWebService (Figure 35). The WSDL
resides in http://localhost:9090/SAVAGEWebServices/X3DWebService?wsdl. The link
to the WSDL is clicked. The generated WSDL file for the X3D web service is as shown

below (Figure 36). The server is localhost because the current development environment
is the author’s personal laptop. If web services are hosted on another web application

server, the specific name and port number of the server is used instead.
73

<mml verzion="L.0"encoding="UTF-8"%
<l-- Published by JE0-03 B at Itp:fJ jac-ws. dew. java.net, BI's wersion is JRX-U8 BI #.1.8-BOS-BLL. =
<l- Gererated by JAX-03 B at Metp:f) jax-ws. dew.java.net. BI': wersien is JRE-WS BI & 1.i-BOS-BIL. =
- <definitions kminz s0ap="httpsy’ /schemasumlsoap.org/wsdl/s0ap/ " s minsitnz="https’ /R IDWSMethod/ "sminz: nsd="https’ /wermnwdorg /2001 EMLSchema"
sminz="httpy’/schemas.emlsoaporg/wsdl/ "targetNamespac e ="https//RIDWSMethod, "n ame ="K30WebServiceService
- dtypess
- <usid schemax
<nzdimport namespace=hitpy /X30DWSMethod,/ " schem aLoc ation="hitpsy localhost0000,/SAY AGEW ebServices /X 30WebService 2usd=1"/-
fusd schemax
“ftypess
- <mezzaqe name="findX3DModel ">
<part name=parameters"element="tns:findX30Model"/ -
<messager
- <message name="find¥3DModelResponse"-
<patt name=parameters" element="nsfindX30ModelResponse " /=
+messager
- <messaqe name="getd30Model">
<patt name=parameters" zlement="tnsxgetX30Modal "/~
+fmessager
- <mezzage name="get¥I0ModelRasponsa’>
<part name=parameters"zlement="tns:yeti30ModelResponse '/~
+fmessages
- <pattType name="¥30WebService ">
- <pperation name="find%3DModel"-
<input mess age="msfindX30Model "/
<output mess age="tsfind%30ModelResponse /-
<foperations
- <operation name="getX3DModel -
<input mess age="msxgetd30Model -
<output mess age="tnsgetX30ModelResponse” >
<foperations
<fportTypes
- <binding name="%30WebServicePortBinding "tvp=="tnsX30WebService -
<s0ap: binding tranzpart="https//schemasxmlsoap.org/soap/http"style="document" />
- <pperation name="find¥3DModal"+
<z0apioperation soapAction="
- <inputs
<zoapibody use=literal"/>
<finput=
- <outputs
<zoapibody use=literal"/>
< outputs
<foperations
- <operation name="get¥30Model
<zoapoperation soaphction=" >
- <input®
<s0ap:body use=literal"/=
“finputs
- <putputs
<zpapibody use=literal"/>
<foutput=
<foperations
+/binding=
- <service name="R30WebServiceService -
- =<partnama=K30WabServicePort"bindin ;="ms:X 30WebSarvicePortBinding -
<zpap addres s location=hitpy//localhost9090 /SAYAGEW ebServices N30 WebService" /=
<fports
+fzarvices
<fdefinitions=

Figure 36. WSDL file that describes X3DWebService.

The WSDL describes information about X3DWebService which includes the web
services operations (findX3DModel and getX3aDModel), SOAP binding and the web

services endpoint information such as web service address location.

74

The address of DESWebService on development environment is
http://localhost:9090/SAVAGEWebServices/DESWebService. The WSDL resides in
http://localhost:9090/SAVAGEWebServices/DESWebService?wsdl. The generated

WSDL for DESWebService is as shown below (Figure 37).

@ BB = Fito/flocalhost 8090/ SAVAGEWeb Services/DESWeb Service wsdl

Lot |83]v] Web Sewvices £ httpifflacalhost0090/S.. x ||

<?umlversion="1,0"encoding="UFE" 7=
<l-- Published by JAX -W3 I s
== T T2 LY I's wersion iz JAX -W3 BI #.1.¢ -bi§-RLL -
- =definitionzimins: soaphttpy/ /s " swminsitn="hitp:/ /DESWSMethod/ " imlinz ns & hitps’ /wwrenwdorg 2001,/ EMLS chema
amins"https’ /schemas.xmlsoaporg/wsdl/ "targetMamespace"https/ /DESWSMethod/ " nam="DESWebServiceService -
- <typess
- <usdischemi
<wsdiimpornamespace hitpy /DESWSMethod, " schemaloc atich httpy/ /localhost9090/SAY AGEW ebServices 'DESWebService?esd=1 "/~
#usdischems
“types
<rmezzagename="findDESModel "~
<partname="parameters " ¢lermen="msfindDESModel " /=
+message
<rneszagename="findDESModelResponse "=
<part name="parameters " ¢lermen="msfindDESModelResponse "/
+fessage
<rnessagename="getDESModel "=
<part name="parameters " elzmen="tms e tDESModel " /=
“meszage
<meszagename="getDESModelResponse "=
<partname="parameters " elemene="tnsgetDESModelResponse " /=
“meszage
<portTypenarme="DESWehService "+
- zoperationname="findDESModel "-
<inputressaq="tnsfindDESModel " /'~
<output message msfindDESModelResponse /=
<foperation
- Zoperationname="getDESModel "=
<inputmessage"tns getDESModel " />
<autput messags nsgetDESModelResponse "/~
<faparation
A portType
- =hindingname="DESWebServicePortBinding " type="tnsDESWebService "~
<zoaptbindingtranspore'httpy’ /schemas.emlsoaporg/soap/http " styl="document " />
- <operationname="findDESModel "~
<spapioperationsoapdctior™ /=
- Zinput
<zoapbodyuze="literal" /=
<input-
- <output-
<soapibodyuse="literal" />
< output=
<foperatiorn
- zoperationname="getDESModel "~
<soaptoperationsoaphctior™ />
- <input~
<zoaptbodyuze="literal" /=
input-
- <output>
<soapbodyuse="literal" /=
< output-
<foperation
<fbinding
- <servicename="DESWebServiceService ">
- =port name="DESWebServicePort" binding"tns DESW ebServicePortBinding "~
<soapiaddresdocatior hitpy! Alocalhos 0090 /SAY AGEWebServices /DESWebService /=
< part=
“fzerice
</ definitions

wersion i JAX -W3 BRI &.1.i -b0§-RC1]

Figure 37. WSDL file that describes DESWebService.

75

G. RESOURCES AUTOGENERATED BY NETBEANS AND JAX-WS

NetBeans generates Java source which imports the JAX-WS library. These
classes are DESWebService.java and X3DWebService.java. Web services are indicated
with @WebService(). Web methods are indicated with @WebMethod. In the case of
SAVAGE web services development, there are three types of resources auto-generated by
JAX-WS. JAX-WS generates web method Java classes. Java classes generated for the
X3D web service are FindX3DModel.java, FindX3DModelResponse.java,
GetX3DModel.java and GetX3DModelResponse.java. Java classes generated for the DES
web service are FindDESModel.java, FindDESModelResponse.java, GetDESModel.java
and GetDESModelResponse.java. Basically, these are the classes required to generate the
other two resources, which are the WSDL and the associated schemas for X3D and DES
web services. Java Architecture for XML Bindings (JAXB) marshals the Java classes to
XML.

H. EXTENDING SAVAGE WEB SERVICES

Additional web methods for SAVAGE web services are needed. For example,
X3DWebService might incorporate web methods that perform add, delete and update of
X3D models. Hence, the SAVAGE web services design has to be extensible. In principle,

there are three simple steps to extend SAVAGE web services.

Step 1 - If it is an added web method for an existing web service (e.g.,
X3DWebService), then add the class method into the existing web service class. If the
required web method does not belong to the existing web service, then create a new
[model name]WSMethod package, create a new web service class [model
name]WebService in the package and insert the web method into the newly created class.
Note that web method calls generic private method executeWebServiceOperation (with
input parameter WSStrategy) which then performs standard invocation of the specific

strategy passed in by the web method.

Step 2 — Changes are required in the WSModel package. The reusable SAVAGE
catalog model does not meet the design requirement. The design approach is to add a
builder class to construct the new model of interest. If the model is meant to be a global

76

instance, then use WSSingleton to create and manage the model instance. Create new

result entity classes if there is a design requirement to parse the result set into XML.

Step 3 — Changes are required to the WSController package. Extend WSStrategy
for each web method added. Each extended strategy class [model
name] [function]Strategy will implement executeOperation which encapsulates the

business logic or rules for the web method.
Enhancements can be performed in two ways:

1. Insert web methods, strategy, model classes and their associated methods in
the NetBeans UML. Invoke NetBeans forward engineering to generate the
necessary code stubs for the classes and methods. Proceed with detailed
implementation within the created class and methods. Perform NetBeans
reverse engineering to update the UML models after implementation. Test the

web method implementation before checking into SVN.

2. Implement directly in the code base. Update UML model via NetBeans
reverse engineering. Test the web method implementation before checking
into SVN.

. SUMMARY

This chapter presents use cases and various implementation approaches for
SAVAGE web services. The components of SAVAGE web services were described in a
UML component diagram. The class hierarchy for each component was addressed in
UML class diagrams. Interactions between class instantiations were illustrated in UML
sequence diagrams. The chapter concluded by documenting the design approach to
extend SAVAGE web services.

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

V. IMPLEMENTATION, DEPLOYMENT AND RESULTS

A. INTRODUCTION

This chapter starts off by elaborating the setup for the development environment.
The hardware and software required for the development of SAVAGE web services are
discussed. The implemented SAVAGE web services are deployed on SAVAGE servers.
The chapter concludes by discussing test results corresponding to each use case.

B. IMPLEMENTATION SETUP

Taking into consideration the design specified in Chapter 1V, the hardware
required to support the demonstration on the development environment is simple. It is a
single machine setup. The machine runs on a 32-bit operating system, Intel® Core™ 2
Duo CPU T7300 @ 2.00GHz, with 2 GB RAM and runs on VISTA. If the application
runs on this machine and meets the design requirement, then it will likely run on other

types of machine (e.g., Mac, Unix, etc) with equivalent specifications.

The software required to be installed on the development and demonstration
machine is NetBeans Integrated Development Environment (IDE) 6.1 (version 6.0 will
do as well), Java Development Kit (JDK) version 6 (version 5 will do, too) and Tomcat
application server version 6. The NetBeans IDE is used for the implementation of web

services and to facilitate web services deployment.

79

| a
% ot S ===
2888 J:-B4:16 PM org.apache.catalina.core_AprLifecycleListener init =

e in production environments was not found on the java.library.path: C:“Program
Files“Apache Software Foundation“Tomcat 6.8%bin;.;C:»WindowsSun~Java~hin;C:xWin
dowsssystem3d2 ;C:xWindows ; C:\PROGRA™IINDIGO™1“per1vbin;:;c :wprogram files“javasjdk
1.6.8_P4~bin; C:sWindowsssystend2; CisUindows ; C:sUindowsssystemnd2 when;c i “\program
files“dizkeeper corporation“dizkeepers;c:“program filesscommon files“lenovo;c:sp
rogram fFilessthinkpadsconnectutilities;c:“program files“lenovosclient security s
olution;c:“program files“microsoft sql server \?8-tools~binn“;c:“program files“qgu
icktimesgtsystem~;C:“Program Files“MATLAB~R2007a“bin;C:“Program Files-MATLAB-R2H8
A7a~hin“win3i2 ;C:“Program Files“TortoizeSUN;C:“Program Files“Subversion“hbin;:;C:%Pr
ogram FilessMNetBeanz 6.1%javaZsant~hin;C:“Program Files>0penCU~hin;
- 20088 3:84:17 PM org.apache_coyote httpll HttpliProtocol init
Initializing Coyote HITP-1.1 on http— 7878
Sep 21, 2888 3:84:17 PM org.apache.catalina.startup.Catalina load
INF(: Initialization processed in 452 ms
Sep 21, 2088 3:84:17 PH org.apache.catalina.core.StandardService start
INFO: Starting service Catalina
ep 21, 2088 3:084:17 PM org.apache.catalina.core.StandardEngine start
INFO: Starting Servlet Engine: Apache Tomcat-s6_B_16

Sep 21, 2888 3:84:18 PM org.apache.catalina.core.StandardContext addfpplicationl

istener

INFO: The listener "com.sun.xml.ws.transport.http.servlet _WSServletContextListen
iz already configured for this context. The duplicate definition has heen ig

2088 J:-B4:18 PM com.sun.xml_ws_transport_http.servlet WSServletContextLi
stener contextInitialized
INF(: WSSERULET12: JAX-WS context listener initializing
ep 21, 2088 3:84:28 PH con.sun.xml.us.transport. http.serviet _WSServletDelegate
<init>
IMFO: WSSERULET14: JAX-UWS servlet initializing
Sep 21, 2088 3:04:21 PM org.apache.coyote _httpll HttplliProtocol start
INF(: Starting Coyvote HTTP-1.1 on http—7878
- 20B8 3:84:21 PH org.apache. jk.common.ChannelSocket init
: JK: ajpl3d listening on ~B.A.A_.A:8087
2888 3:-:84:21 PH org.apache.jk_zerver.JkMain start
Jk running ID=0 time=8-52 config=null
Sep 21, 2088 3:94:21 PM org.apache.catalina.startup.Catalina start
INF(: Server startup in 4379 ns

Figure 38. View Tomcat application server log in command prompt.

The Tomcat application server can run off window service or command prompt
(run as administrator). Running the Tomcat application server in command prompt makes
it more convenient to test and troubleshoot because you can view the server log running
off the command prompt (Figure 38) while coding in NetBeans. The executable file for
running Tomcat application can be configured as window service. To manage window
services, go to Control Panel - Administrative Tools = Services. Select the service and

click on the play or stop icons to start or terminate window service (See Figure 39).

80

File Action View Help

€3 |E =1 »

Services (Local)

Services (Local)

Select an item ta view its description,

Marme

Ac Profile Manager Seniice
Access Connections Main Service
Apache Tomeat

Apache2.2

Apple Mobile Device

Application Experience

Application Information

Application Layer Gateway Service
Application Management

ASP.NET State Service

Background Intelligent Transfer Service
Base Filtering Engine

Bluck Level Backup Engine Service
Blustooth Suppart Seriice

Bonjour Service

Business Contact Manager SGL Server .
Certificate Propagation

Cisco Systems, Inc, VPN Service

CNG Key Isolation

COM Event System

COM+ Systern Application

Computer Browser

Cryptographic Senvices

DCOM Server Process Launcher
Desktop Window Manager Session Ma..
DF$ Replication

DHCP Client

Diagnostic Policy Service

Diagnostic Service Host

Diagnostic System Host

Diskeeper

Distributed Link Tracking Client
Distributed Transaction Coordinatar
DNS Client

Extensible Authentication Protocol

Description

Apache Tomeat 6.0.16 Server - hitp://tomcat.apache.org/
Apache/2.2.8 (Win32) mod_ss1/2.2.8 OpenSSL/0.0 8g mod_per/2.0.4-dev Perl A5 10.0
Provides the interface to Apple mobile devices.

Pracesses application compatibility cache requests for applications s they are launched

Fatilitates the running of interactive applications with additional administrative privileges. If this serv..

Provides support for 3rd party protocol plug-ins for Internet Cannection Sharing
Pracesses installation, remaval, and enumeration requests for software deployed thraugh Group Pali

Provides support for out-of-process session states for ASP.NET. If this sevice is stopped, out-of-proc...
Transfers files in the background using idle network bandwidth, I the senvice is disabled, then any ap..
The Base Filtering Engine (BFE) is a service that manages firewall and Internet Protacol security (Psec..

Engine to perform block level backup and recovery of data

Bonjour allows applications like iTunes and Safari to advertise and discover senvices on the local netw...

Contrals the start of the Business Contact Manager SOL Server instance (MSSMLEEE).
Propagates certficates from smart cards.

The CHG key isolation service is hosted in the LSA process. The service provides key process islation .,
Supports System Event Notification Service (SENS), which provides automatic distribution of events t..
Manages the configuration and tracking of Component Object Model (COM)+-based companents. L.
Maintains an updated list of computers on the network and supplies this list to computers designate..
Provides four management services: Catalog Database Service, which confirms the signatures of Win..

Provides launch functionality for DCOM services.
Provides Desktop Window Manager startup and maintenance services

Replicates files amang raultiple PCs keeping thera in sync, On Client, itis used to roam folders betwe...
Registers and updates IP addresses and DS records far this computer, I this service is stopped, this c..
The Diagnostic Policy Service enables problem detection, troubleshosting and resalution far Window:,

The Diagnostic Service Host service enables problem detection, troubleshonting and resolution for Y.

The Diagnostic System Host service enables problem detection, troubleshooting and resolution for W..

Controls the Windows Diskeeper Serice
Maintains links between NTES files within 2 computer or atross computers in a network,
Coordinates transactions that span multiple resource managers, such a5 databases, message queues,

The DNS Client service (dnscache) caches Domain Name System (DNS) names and registers the ful ...
The Extensible Authentication Protocol (EAP) service provides netwerk authentication in such scenari...
Enables you ta send and receive faxes, utilizing fax resources available on this computer or on the net..

Status
Started
Started

Started
Started
Started
Started

Started
Started

Started
Started
Started

Started
Started
Started

Started
Started
Started
Started

Started
Started

Started
Started
Started

Started
Started

Startup Type
Autornatic
Automatic
Manual
Autornatic
Automatic
Autornatic
Manual
Manua|
Manua|
Manual
Autornatic (
Automatic
Manual
Autornatic
Automatic
Autornatic
Manual
Automatic
Manual
Automatic
Manua|
Automatic
Automnatic
Automatic
Automatic
Manua|
Automatic
Autornatic
Manual
Manua|
Autornatic
Automatic
Manua|
Automatic
Manual
Manual

Log On As
Local System
Local System
Local System
Local System
Local System
Local System
Local System
Local Senvice
Local System
Network Service
Local System
Local Senvice
Local System
Local Senvice
Local System
Local System
Local System
Local System
Local System
Local Senvice
Local System
Local System
Network Service
Local System
Local System
Local System
Local Senvice
Local Senvice
Local Service
Local System
Local System
Local System
Network Service
Network Service
Local System
Network Service

'\ Extended / Standard /

Figure 39.

type and log on id of window services.

81

Manage window services panel shows name, description, status, startup

[E] MNew Web Service @

Steps Name and Location

1. Choose File Type weh Service Mame: |X30WebServices|
2. Name and Location

Project: |SAVAGEWebServices

Location: | Source Packages -

Package: |¥3DWSMethod -

@ Create Web Service from Scratch

Create Web Service from Existing Session Bean

Enkerprise Bean: Browse, .,

< Back | Mext = ’ Finish || Cancel || Help

Figure 40. Create web service using NetBeans web service wizard.

The NetBeans project “SavageWebServices” is created to contain the

implementation of SAVAGE web services. It is a type of web application in NetBeans.

After this, right click the SavageWebServices web application and select “new
web services”. A “create web services” wizard will pop up. Fill in the web service name
and the Java package it belongs to. Click “finish” and the web service is automatically

generated.

82

[xcamiebiservice java al'j A==
source [Design || B B 100+ | &, & | @2

X3DWebServiceService

Operations Add Operation... | [~

(= findX3DMode! = [=

Parameters Qutput Faults Description
Parameter Name Parameter Type
searchTerm Jjava.lang.String
() getX3DModel =] 8
Parameters Qutput Faults Description
Parameter Name Parameter Type
url java.lang.String

Quality Of Service

I Optimize Transfer Of Binary Data (MTOM)
[Reliable Message Delivery

[Secure Service

[Advanced ..

Figure 41. NetBeans web service design view is used to add web service operations.

Use the visual designer to add web service operations (Figure 41). The source
code for the web method will be automatically generated.

S0 SAVAGEWehServices
r+> o Web Pages

-‘ el eb Services
: G- (8] wapwebService
: '1-@ DES'WebService
r+> & Configuration Files

g Server Resources
=" {5 Source Packages
i [1] DESWSMethod
= wsContraller

|& DESFindStrategy.java
@ DESGetStrabeqy . java
----- |rj_E| WSSingleton. java
[wsstrategy.java
|_'| WUty java
IJ ¥3DFindStrateqy.java
|rj_E| #3DGetStrakegy. java

[
||:I _'
E
3
[m]
=%

o

: :':'_ B «3 DWSMethnd
|'3:fj- {5 Test Packages
G- & Libraries

- & Test Libraries

Figure 42. NetBeans project view gives a good overview of projects, software
components, library, configuration files and source code.

83

Taking reference to the SAVAGE web services design specified in Chapter 111,
implement the source code for the web methods in X3DWebService and DESWebService.
The source code for the various classes in DESWSMethod, X3DWSMethod, WSController

and WSModel Java packages is also implemented according to what is specified in the

design specification. The layout of the created packages, classes and web services is

shown in Figure 42.

[Web Pages
-l Web Services
(@) xapwebs
[B] DESWebs
B @ (Configuration
lg Server Resol
=l Source Packs
| m@-FF oeswam
[wsContr
i@ DEsH
[# DEsE
[wasi
[wsst
&
=]

WSl
¥3DF
o e|E] wape
[wsModel
- @ waowsM
5 Test Package

E::

e
G-l Libraries
+

Test Libraries

[#3DWebservice

&) executewebSery
@ find¥30Modelisty
Lo () get¥3DModel(Ste

4 I

e

Build
Clean and Build
Clean

Generate lavadoc

Run

Undeploy and Deploy
Debug

Profile

Test RESTful Web Services

Set as hain Project
Open Required Projects

Close

Rename..
Move..,

Copy,
Delete

Find...
Rewerse Engineer..,
Wersioning

Local History

Properties

& DEED = | %

Figure 43.

Y brice ¥
class X3DWebService |

shMethod (operationName = "f£i
1lic String findX3DModel ([e
fing searchTerm) {

del™)

name =

"searchTerm™)

Z3DFindStrategy findStrategy = new X3IDFindStrategy (SearchTerm) ;
String strategyResult = executellebZerviceOperation (finditrategy):

return strategyResult;

Delete

Ctil+F ||

4

Undeploy and deploy web services using NetBeans.

To build and deploy Savage web services, right click SavageWebService web

application and select “build from menu”. Upon successful build, select Undeploy and

Deploy from the menu (Figure 43). Ensure that the Tomcat server is running before

invoking the deploy option.

Should there be complications in the build and deployment process, select “clean

from menu”. Confirm that the application is undeployed on the Tomcat application

server. Restart the Tomcat server. Perform the build and deploy process again.

84

@ savAGEWebServices
rit, fa Web Pages
f (@ ‘Web Services ‘ ‘
o
ﬁ-_‘.@ DESWebServic| Upen
- m Corfiguration Files) Reftesh Service
~l g Server Resources
| fg Source Packages
- [] DESWSMethad
I"'I [wsConkraller

[rwy}
or

- || ®DESEetstr

|| Pwisstrateg

| X30WebService - Havigatol Dielete

Members Yiew

iw:i. wabWebService Praperties

__z.l__._. S e

Ldd Qperation...

Test Weh Service

@‘]"-"3""1.-'-.-'SSiru;|IlE!lzl:j Configure Handlers..,

>&} executeebServiceCper ation W SStr, - an
] m | b a1

% MEED = =

Wehiervice ()
public class X3DWehService

- [E1DESFindStY Eygit Yeh Service Attributes

ilikse 3 enerate and Lo
[B Uty 5. € d Copy WSDL

Delete

CEerm

ram searchTerm segarch t
:?H!?.'i! List of Z3D
t.l-

noe

thod (operationilame = "finc
dcring £indX3DModel (ETehF
zearchTerm] 1

PFindStrategy find3trategs
ring strategyResult = exec

SATODD write wour implements

return strategyResult:;

e

[s

Figure 44. Test web services in NetBeans.

Right click the deployed web service and select Test Web Service from menu. In

the example shown in figure 44, the Internet Explorer (IE) browser is automatically

launched as client. The IE browser then invokes the X3DWebService.

85

/2 hitpi/flocalhost:9090/SAVAGEWebServices/X3DWebServiceZwsd - Windows Interet Explorer

? o, € hitpi#/localhost9090/SAVAGEWebServices SADWebService husd| v | ¢2| K | Google JeRe
File Edit “ew Favorites Tools Help

Google [C+ B Go (P@ B~ ‘ 7 Bookmarksw E]Pupupsul(ay‘ % Check v 8 Autolink v = AutaFill [Send tow () Settingsw
wodr 199+ | Maval Postgraduate Sch... | § Gmail Email from Google | & Micrasoft Outlook Web ... | Blackbosrd Academic S.. | 3 Getting Startechwith 18%.. | & http:fflocalhost 080, % | | B B v & ov o Page v (G Tools v

<2l version="1.0" encoding="UTF-8" 7>
<l-- pu BT ar ket
<l e RI at htt 8 -U3 RI 2.1 5
- <definitions kmins: soap="http://schemas.xmlsoap.org/wsdl/soap/" xmins: tns="http://X3DWSMethod/" «mins: zsd="http:/ /www.w3.org/2001/XMLSchema"
wrins="http:/ /schemas.xmisoap.org/wsdl/" targetiamespace="http://X3DWSMethod/" name="X3DWebServiceService"-
- <typas»
- <usdischemas
<sdtimpart namespace="http://X3DWSMethod/" schemalocation="http:/ /localhost:9090/SAVAGEWebServices/X3DWebServiceTysd=1" /»
<fusdischemas
</types>
- <message name="findX3DModel">
<part name="parameters" element="tns findXaDModel' />
</messages
- «<message name="findX3DModelResponse">
<part name="parameters" element="tns:findX3DModelResponse" /=
</message>
- <message name="getkaDModel"=
<part name="parameters" element="tns:getX30Model" />
«/message>
- <message name="getX3DModelResponse”>
<part name="parameters" elemsnt="tns:getX30ModeIResponse” />
</messages
- <portType name="X3DWebService">
- <operation name="findX3DModel">
<input message="tns:findx3DModel" />
<output message="tns:findX3DModelResponse" /-

LZ-U3 RI 2,1.2-b0O5-RC1. --

A

</operations
- <operation name="getX3DModel">
<input message="tns:getX3DModel" />
<output message="tns:getX3DModelResponse” />
</operations
</portTypes
- <hinding name="X3DWebS8ervicePortBinding" type="tns:X3DWebService">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document' />
- =operation name="findX3DModel">
<soap: operation soapAction="" />

- <input>
«<soap:body use="literal" />
<finput:>
- <output>
K _znanthady ral o, B2 |
Done @Intemet\PmtE(tEd Ilode: On HU0% v

T LeongThesisDraft2).. | @ NetBeansDEG1 | \1 Untitled - Paint 7 tomeats - Shorteut A . <BRE UG sum
g o

Figure 45. 'WSDL file that describes X3DWebService.

The WSDL generated by JAX-WS is as shown in Figure 45. JAX-WS is part of
the J2EE platform from Sun Microsystems.

C. DEPLOYMENT

There are two main application servers used for the deployment (see Figure 46).
First is the APACHE web server. External clients make https invocations to this server.
The confidentiality of messages that are sent between clients and the APACHE web
server is ensured at the transport layer via SSL (port 443) encryption. The APACHE web
server also plays the role as proxy or facade to other SAVAGE data and application
servers. The motivation is to protect SAVAGE servers from external clients. SAVAGE
web services are deployed on a Tomcat web application server. The APACHE web server

redirects the web service invocation request to the Tomcat web application server. The

86

messages that are sent between SAVAGE servers are not encrypted for performance

reasons.

Client 1

;ﬂnumpnnent:‘:; |
Java Client

A
LY
weh setvice invocation via HTTPS

N

Savage APACHE Web Se Savage Tomcat Web Application Server

N

£4gomponent »*

DESWSMethod | Savage WS WAR
|
& E’r — mxecutpHirateny
(MisContratier,

s
executeStratedy ||

X3DWSMethod 4
= =) 7

/
~ readSavageCatalop
/
WSModel

\
=l

<dcomponent s *

Proxy Service

/
wieh service invocation via HTTPS

1|:nn1unnt» |
JSP

Figure 46. SAVAGE web services deployment diagram in UML. Web services are
deployed in SAVAGE Tomcat Web Application Server.

SAVAGE web services are tested and compiled using the NetBeans IDE on a
development machine. The Java war file is sent from the development machine via
Secure File Transfer Protocol (SFTP) to the Tomcat web application server
/USR/IJAVAITOMCAT/WEBAPPS/ directory. Tomcat web application server log files
are found in the /usr/java/apache-tomcat-5.5.17/logs directory.

D. TEST CLIENT SET UP

Create a separate project of type “Java application for Java client”. The Java client
is required to test the web methods. The Java client can be Java classes leveraging JAX-

WS to invoke SAVAGE web services. Alternatively, web services can be invoked via the
87

Java Servlet Page (JSP). A demonstration JSP client to invoke SAVAGE web services
was developed. The user selects the web method via the associated radio button and keys
in input parameters in the text box. The user then clicks the “Invoke Web Service” button
(see Figure 47). The selected web method is invoked. The client receives and writes the
XML result to a file. A hyperlink named “Savage Web Service Invocation Result” to the
file is automatically created on JSP (Figure 48). The user clicks on the hyperlink and the
XML result is displayed in a separate browser window. For an X3D model, the .x3d file
extension is automatically detected by the browser. Thus, it can be automatically

displayed with an X3D compatible viewer such as Xj3D Viewer. The list of X3D

resources is found in http://www.web3d.org/x3d/content/examples/X3dResources.html.

|/ 15P Page - Windows Intemnet Explorer

*en hitpif/localhost:3030/Sava geW/SCientWebAppDevTestfindexjsp

File Edit “iew Favorites Tools Help

~ »
W @ (ISP page | Boor B - o[Page v G Tool ~

Welcome to SAVAGE Web Services Test Page

@ findX3DModel
2eti30Model

7 findDESModel
) getDESModel

Fi6 [Invake Web Senice

w -8 C > /5 15P Page - Windows.. | T LeongThesisDraft[Cor || & tomeat - Shortci I 100% <EET AEe naem

Figure 47. SAVAGE web services JSP test page. The user selects the web method,
keys in parameters and clicks “Invoke Web Service".

88

%) Savnge Web Services Test - Netacape Navigator

File dr View Higtory @ elp

880 :E 90/ S g WILk W ebApp DeTert/ Savage WS lientierdst,iphweb EiOMedelinputshitp s IS S svvagerpsedutiliinag = b | - Q QD
3 Netscape.com |) Getting S

2] Savage Web Services Test

Savage Web Service Invocation Result

Return to Query Page

T Rty loeatho G0 e ge WChertWebApy g Biriultxid [1]

Figure 48. JSP test page that contains hyperlink to SAVAGE web service invocation
result.

NetBeans makes establishing the web services client easy. The developer right
clicks on “project” and selects “new->web service client” (Figure 49). A wizard pops up
and prompts for the location of the WSDL (Figure 50). The WSDL locations for X3D
and DES web services in the development environment are found in
http://localhost:9090/SAVAGEWebServices/X3DWebService?wsdl and
http://localhost:9090/SAVAGEWebServices/DESWebService?wsdl, respectively. The
WSDL locations for X3D and DES web services in the production environment are found
in https://savage.nps.edu/SAVAGEWebServices/X3DWebService?wsdl and
https://savage.nps.edu/SAVAGEWebServices/DESWebService?wsdl, respectively. Upon
indicating the location of WSDL, NetBeans reads in the WSDL file to gather the

operations, endpoint and binding for SAVAGE web services. This information is used to
generate necessary Java classes which incorporate JAX-WS and other necessary Java
APIs to establish the web services connectivity. The code required to call these Java
classes can be easily generated by NetBeans and incorporated (via drag and drop) into a
Java main class or JSP. The Java main class or JSP will trigger the invocation of web

services when the program runs.

89

fTes &1

Source Refactor Build Run Profile Versioning Tool Window Help

iSorwieps | SanPage M|

Walcoma ta Notlloans IDE 6.1

Java Winh
Quilck Start Tuterial S — PESTIo Wb Borvices
5 Lrterprise Mobilty
o b Visual Wb JSF Page.. AN et
id = Mednrdity Blupe s P
o8 wasan il u_ \’h:ulWleSFhue Fragment—. - y Bl m:m.m.
o CoQuson| iy o Buid o
Jo Server Resour Cloan % HTML.
Uy Seurce Packsg B sendet.
L Tempadages Generate lmadac B e
L . Urab Fun B Jevs Package.
o [Tewtilbrares e a0, Web, Entarpena, o ol Lama Proge asnming Swirry Gl
T & TedCatorfopka Unddeploy and Deplay [ety Class... Hus vy thrd party phagns W Apyn P
b Temsavegewsckt Deb
D & wmoore | i ~ntsidizne -y ———
0 G eppiont il = 3 S0 UL Madeling
ERFiE H Web Senice...
5o 5 Maim Pragect S Wb Service fram WSDL... e Phaging == More Demos and Tutorisls >
e Pt @ web Senvce Client...
i & RESTRA Web Services from Ertity Classes...) Show 0 Rertip
5 RESTHul Web Sences from Pattems._.
Ferams... =
e P Osher..
Oupart i wa|
T Delete Delets S e e
Fand_. ChiloF
Reverie Engnieer..
Versioning .
Laesl History '
Propesties

Figure 49. Creating web services client in NetBeans.

|| supoe | GEEE

Walcoma ta Notfloans IDE 6.1

1] New Web Senvice Chent E‘
Quild | Sty WSO ad Cliesil Lacation b
PESTIU Web Services
5. Choces e Type Speciy the WSDL Fie of the Weeh Serace,
2. WSOL and Chent Location y
Whal | Froect: = son
| Local Fie: Ruby'
HetBieans Moduies.
Taki o WIDLURL; | kg [fsarvage np ol SAYAGE WebServiers DO | Sek Proy.. _I
Speciy a kcakion for the chert.
Pregmet: T W Cherd Wb A ProdTmt
S Gl
Mobile devek Package: de. Sage
for dwva FE
Chart Sy BRCWS Sty = Mablle Appe
UL Modeling
faerrate Dupatih e
More Demos and Tutorials >
©Sun |
- | xed [et | [reh] [Gne] [
Dutpat *u g Cutp

Figure 50. Web service client wizard is used to create the web service client that
facilitates connectivity to SAVAGE web services in NetBeans.

90

Once the web service client connectivity is established, NetBeans will respond by
generating and displaying “web service references” on the IDE (Figure 51). These are

Java objects that capture information about the web services.

—u.__-u SavagewsClientWebappProdTest
o BhlL Web Pages
=MV R/ch Service Refersnces
—|E‘] #3DWebService
: —gg #3lWwebServiceService
58 %30WebServicePort
@ Ffindx3DModel
: L@ getk3DMadel
—@ DESWebService
= gg CES'WebServiceService
B- (B DEsWebServicePort
beo@ findDESModel
o @ getDESModel
Configuration Files

il il i

Server Resources
Source Packages
Test Packages
Libraries

e T e OO e OO e SO

Test Libraries

Figure 51. Web services client established in NetBeans. Web service references
contain web service client objects which can be connected to a web service.

E. TEST RESULTS

Test plans were established for web methods findX3DModel, getX3DModel,
findDESModel and getDESModel. Tests were executed according to the test plan within
the implementation setup. All test results verified correct. The details of the test plan and

result for each web method are elaborated below.

a. findX3DModel Webmethod

Test plan — Java client invokes X3DWebService findX3DModel web
method. The search term (input parameter) is “F16”. X3DWebService receives the
request, processes the search term (performing string match test with the content of name,
URL and description attributes) and returns list of X3D names and URLS with attributes

that match the search term.

91

rublic static woid mair(Scring[] args) |

cry |
®idwswethod. X3DTebhServiceService service = new x3dwswethod. X3DWebhSerwviceService () !
x3dwsmethod. X3DWeblervice port = service.getXiDWebhIervicePorti() !
Java. lang.5tring searchTerm = "Fl1a™:
Java. lang.3tring result = port,.f£indX3DModel (searchTerm)
System.out.println("REesult = "+result) ;

} catch (Exception ex)

+

Figure 52. Source code that invokes findX3DModel web method in Java client main
class.

The code snippet that implements the Java client for this test plan is shown
in Figure 52. The search term “F16” is captured in variable searchTerm and the result
string (list of matching X3D names and URLS) is captured in variable result. The result is

printed out on the console.

<l version="1.0" encoding="UTF-8" 7=
- <xu3-dFind-result-entity=
- <result-set xmins: xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi: type="java:org.exolab.castor.mapping.MapItem">
<key xsi:type="java:java.lang.String">RearRightWheel</key>
<value xsiitype="java:java.lang.String"=https://savage.nps.edu/Savage/ aAircraftFixedWing/F 16-FightingFalcon-
Turkey/RearRightWheel.x3d</value>
< result-sets
- <result-set xmins: xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi: type="java:org.exolab.castor.mapping.MapItem">
<key xsiitype="java:java.lang.String">RearLeftwheel</key>
<value xsiitype="java:java.lang.string">https:/ /savage.nps.edu/Savage/ AircraftFixedwing /F 16-FightingFalcon-
Turkey/RearLeftWheel.x3d</value>
</fresult-set>
- <result-set xmins: xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:type="java:org.exolab.castor.mapping.MapItem">
<key xsiitype="java:java.lang.String">FrontWheel</key>
<value xsi:type="java:java.lang.String">https:/ /savage.nps.edu/Savage/ AircraftFixedWing /F 16-FightingFalcon-
Turkey/FrontWheel x3d</value>
< result-set>
- <result-set xmins: xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:type="java:org.exolab.castor.mapping.MapItem">
<key xsiitype="java:java.lang.string"=F16+</key:
<value xsittype="java:java.lang.String">https:/ /savage.nps.edu/Savage f AircraftFixedWing /F 16-FightingFalcon-
Turkey/F16.x3d</value=
< result-set>
</w3-dFind-result-entity>

Figure 53. Return result for FindX3DModel in XML.

The result XML is shown in Figure 53. The return result includes X3D
names and URLs of F16 and its related aircraft components (RearLeftWheel,
RearRightWheel and FrontWheel). All the models are retrieved from the file location
https://savage.nps.edu/Savage/AircraftFixedWing/F16-FightingFalcon-Turkey/. Hence,

the result is precisely correct.
92

b. getX3DModel Webmethod

Test plan — Java client invokes getX3DModel web method from
X3DWebService. X3D URL “https://savage.nps.edu/Savage/AircraftFixedWing/F16-
FightingFalcon-Turkey/F16.x3d” is the input parameter. X3DWebService will receive the
request, go to the specific file location in Savage repository and retrieve the X3D model.
The retrieved X3D model is returned to the Java client. The Java client displays the X3D
model on console.

try |
x3idvawethod, ZiDWeblervicelervice service = new x3dvasmwethod,Z3DWeb3ervicelervice();
xidwawethod, Z30Web3ervice port = service.getX3DWehlervicePort();

java. lang. String url = "https://savage. nps.ed/ Savage/ AircrafcFixediing/ F16-FightingFaleon-Turkey/Fla, x3d";

java.lang.3tring result = port.getZilladel url);
Systew, out.println("Result = "+result);
}oeateh (Exception ex) {

i

Figure 54. Source code that invokes getX3DModel web method in java client main
class.

The code snippet in Figure 54 implements the Java client for this test plan.
The X3D URL “https://savage.nps.edu/Savage/AircraftFixedWing/F16-FightingFalcon-
Turkey/F16.x3d” is captured in variable URL and the result string (X3D model) is
captured in variable result. The result displayed by an X3D-compatible viewer is shown
in Figure 55.

93

Figure 55. Returned X3D model for getX3DModel web method. The X3D model is in
XML and is displayed by an X3D-compatible viewer.

One of the metadata elements that the X3D model describes is the
identifier containing the URL of the X3D model. The URL is the same as the input
parameter (X3D URL) passed in by the Java client. Hence, the result X3D model

displayed on the console is correct.

C. findDESModel Webmethod

Test plan - Java client invokes findDESModel web method from
DESWebService. X3D URL
“https://savage.nps.edu/SAVAGE/GroundVehicles/Emergency/WashingtonStatePatrolCr
uiser.x3d” is the input parameter. X3DDESWebService receives the web service request,
searches the SAVAGE catalog (specifically SimulationAgent under SMAL) for the
matching DES behavior, extracts a list of DES agent and URL, and parses the

information to XML before sending it back to the Java client.

94

try {
deswswethod, DESNebIervicelervice service = new deswswethod.DESWeb3ervicelervicel);
deswsmethod, DESNeb3ervice port = service.getDE3Neb3ervicePort():

Java. lang. String %30Tl = "httpa://savade. nps.edu/ Savage/ GroundVehic lea/ Emergency/ HashingtondtatePatrolCruiser. x3d
Java. lang, 3tring result = port.findDESModel (x3D0CL);

Systewm. out.println("Result = "+result);
} catch (Exception ex) |

}

Figure 56. Source code that invokes findDESModel web method in java client main
class.

The code snippet that implements the Java client is shown in Figure 56.
Input parameter (X3D URL)
“https://savage.nps.edu/Savage/GroundVehicles/Emergency/WashingtonStatePatrolCruis
er.x3d” is captured in variable x3DURL. The output parameter (list of DES URLS and
agent in XML) is captured in variable result. The result string is displayed on the console

(Figure 57).

<l version="1.0" encodng="UTF-8" 2
- <DESFindResultEntity»
- <restit-get wming wsi="http:/ fwww.wd.org/200 1/ ¥MLSchema-instance" xsi:type="java:org.exolab.castor. mapping Mapltem":
<key uai:tye="java:java.Jang.String":MilitaryShip: ey
<yalle xsi:type="javarjava.lang.String'shttp:/ /savage.nps.edu/svn/nps/ViskitModels/BehaviorLibraries/SavageTactics,/Friendly/MilitaryShip.xml< val e
«fresult-sets
- <result-set smins:wsi="http:/ fwww.w3.0rg 2001/ ¥MLSchema-instance" xl tyne="java:org.exolab.castor.mapping Mapltem'
<key vel type="java:java.lang String":MilitaryPatrolCraft < keys
<yalue sl type="java:java.lang.String":http:/ /savage.nps.edu/svn/nps/ViskitModels/BehaviorLibraries/SavageTactics,/Friendly/MilitaryPatrolCraft kml< fvalue
£ fresilt-sets
</DESFindResultEntity»

Figure 57. Return result for findDESModel web method in XML.

The result corresponds to the set of DES behaviors described in the
SAVAGE catalog (i.e., given a matching X3D URL in the page element, the list of DES
behaviors is found in SMAL->BehaviorParameterSet->SimulationAgent element). Hence,

the result is correct.

d. getDESModel Webmethod

Test plan - Java client sends a request to getDESModel web method from
DESWebService. DES URL
95

“http://savage.nps.edu/svn/nps/ViskitModels/BehaviorLibraries/SavageTactics/Friendly/
MilitaryShip.xml” is the input parameter. DESWebService receives the request and

retrieves the DES model specified by the URL. The DES model is sent back to the Java
client.

try |
deswsmethod, DE3Wehervicedervice service = new deswsmethod, DESUebZervicelervicel);
deswsmethod, DESWebService port = service.getDESWebZervicePort():

java. lang, String deslrl =
"http://aavage . nps.edy/ svn nps/ ViskitModels/ BehaviorLibraries/ SavageTactics/ Friendly/HilitarvShip. xml™;
java. lang. String result = port.getDESModel deslUrl);
System. out.println("Result = "4result);

b catch (Exception ex) |

}

Figure 58. Source code that invokes getDESModel web method in java client main
class.

Figure 58 show a code snippet of the Java client implementation. DesURL
stores the input parameter and variable result stores the DES model. The result string is
displayed on the console (Figure 59).

96

Zuml wergion="1.0" encading="UTF-8" standalone="yes"?>
SimEntity autho="pjsullv" extend="diskit. FriendlyF orce" name="Military3hip" package="Friendly" version="1.0" xzi:noName spaceSchemaLocation="http:fdiana.nps edwSimkitisimkit xsd" xmins:xsi="
ttp: w03, 02001 ML Schema-instance"s
<Comment=A military ship. When moving this entity has four active sensors (surface, subsurface, air, and the visual percention of humans
on the shig). When not maving the ship has only one sensor, the human. Currently this graph does not take inta account the differsnce in line of
sight of a hurnan on watch in port and a human on watch on the bridge. </Corment
<Parameter name="maverD" type="int">
<Comment=DI3 entity 1D</Comment=
</Parameter>
<Parameter name="entityDefintion” tyne="diskit. SMAL EntityDefinition">
<Comment=The Savage Madeling Analysis Language(SMAL) abject that contains all epecific information about the model being used</Camment=
</Parameter>
<Parameter name="zones" type="diskit ProbabilityZoneGeometry]]">
<Comment>General areas from which waypaints should be generated for this entity. </Comment>
</Parameter>
<Parameter name="visualSensor" type="diskit. Sensor">
<Comment/s
</Parameter>
<Parameter name="surfaceRadarSensor type="diskit Jensor"s
<Comment/>
</Parameter>
<Parameter name="airSearchRadarSensor” type="diskit Sensor"
<Comment/s
</Parameter>
<Parameter name="sonarSensor’ type="diskit. Sensor">
<Comment/>
</Parameter>
<Parameter name="collisionSensar" type="diskit. Sensor'>
<Comment/s
</Parameter>
<Parameter name="lodSensar type="diskit. Sensor">
<Comment/>
</[Parametar>

Figure 59. Return result for getDESModel web method in XML.

The result DES model shows package="Friendly” and

name="MilitaryShip”. This corresponds to “Friendly/MilitaryShip.xml” from the input
variable. Thus, the DES model retrieved is correct.

F. SUMMARY

This chapter elaborates on the implementation setup on the development
environment. The chapter then elaborates on the deployment of SAVAGE web services.
The JSP client is required to establish connection and invoke SAVAGE web services.
The chapter rounds up by describing the test plan and results for each web method
(findX3DModel, getX3DModel, findDESModel and getDESModel). Each web method
corresponds to its use case described in chapter IV.

97

THIS PAGE INTENTIONALLY LEFT BLANK

98

V1. WSAIF ORCHESTRATION AND ADAPTATION

A. INTRODUCTION

This chapter first talks about a SAVAGE orchestration scenario. WSBPEL and
OWL-S are used to model the orchestration scenario. A comparison between WSBPEL
and OWL-S is made based on observation of the SAVAGE orchestration scenario.
Comparison between WSMO and OWL-S is summarized from the literature. The chapter
ends by explaining the approach to integrate software agents and data models to enable

web services integration on the fly.

B. WS ORCHESTRATION SCENARIO FOR SAVAGE WEB SERVICES

Web method findX3DModel will invoke web method getX3DModel or
findDESModel depending on an if condition passed in when the process is triggered. If
the findDESModel web method is triggered, then web method getDESModel will be
triggered sequentially to retrieve the associated DES behavior model.

99

C. SAVAGE WS ORCHESTRATION AND ADAPTATION USING WSBPEL

@ NetBeans IDE 6.1
File Edit Wiew Mavigate Source Refactor Build Run Profile Versioning Tools Window Help
oy CE B N2 [BR Bpa R -
BT L (AT
g [Swteee H[[3 JassDiagram. 5/ [5] comn bpel 5| = E] [patette B |5
% | souce [Destn | mapeer Looang |[ETJC[R] o0 02 8| B B9 B o + 6L &[5 08| 9| g2 SR 3
é > == || [Pattner Lk Elimoke | §
compositePracess E)Rereive (=) Reply g
B | |savageB,, || Basic Activities
T
O [E Assign
. () Empty
g o1
& =
Bl |xowah,, startConposite (E) Wt
= (0 Throw
5 ™
g Assignl () ReThrow
é = (O3
® = InvoliefaDFind &) Compensate
= @ CompensateScope
= e -l Structured Activities
i F 2 While 2| Repeatinti
X > ForEach & Fick
X 1 % Flow {7} Ssquence
=} Sequdr (1 Seape
DESWSLI , —
InvalieX... = dotiething
TnvoleF...
i =
Assign3
=
TnvolG..,
=
= X
vageD. -
5
endCofiposite
=
[T output

» T icrosoft Outiook . | @ NetBeansDEG] | P TeongThessDraftls.. || [Protegeexe IR SvageoWissemat. ") + < BOME W0 20m

Figure 60. SAVAGE WSBPEL composite process in NetBeans design view. The
composite process includes SAVAGE web services methods.

NetBeans provides a tool to create WSBPEL (see Figure 60). NetBeans classifies
WSBPEL activities into three types. The web service activities type includes invocation,
receive, reply and partner link to partner web services. The basic activities type
comprises essential constructs that are required throughout the composite workflow.
Examples are if, wait (wait for an indicated period of time), empty (do nothing), and
assign (mapping between variables). The structure activities type is able to group or
restrict activities within a composite workflow. Examples of the structure activities type

are While, ForEach, RepeatUntil, and Sequence.

It is simple to create a WSBPEL model using the project creation wizard. Just

select new project, SOA category and BPEL module.

100

To import SAVAGE web service WSDL, simply right click SAVAGE web
services and invoke “generate and copy WSDL” to BPEL module.

Drag and drop WSDL onto the drawing panel. After which, drag and drop
necessary WSBPEL activities (web service, basic and structure) from the right side panel

into the drawing panel to construct WSBPEL composite workflow (see Figure 61).

W BpeiModule] - NetBeans IDE 6.1

File Edit View Nevigate Source Refactor Build Run Profile Versioning Tool Window Help

e o R

Figure 61. 'WSBPEL mapper view in NetBeans. The mapper creates WSBPEL assign
activity which maps/copies the output parameter/variable of one web method to
the input parameter of another web method.

In this example, the composite workflow is triggered by the
SavageBpelX3DDESSeqLink web service. startComposite activity receives the invocation
from SavageBpelX3DDESSeqLink. The input parameter to the web service is
searchString (keyword of interest), isGetX3DModel (type Boolean to indicate whether to
retrieve an X3D model) and isFindGetDESModel (type Boolean to indicate whether to

find matching DES behavior URLSs and retrieve their associated models).

101

® BpelModulel - NetBeans IDE 6.1

File Edit Miew Mavigate Source Refactor Build Run Profile Versioning Tools Window Help

" 5] TRVAL Ll TR
PS8 i E b
§ | Stat Page /(3 | sDiagtam_} /55 comp hpel E:Em
E | Sorce Desin [Mepper | Logaig | B)) \g
2| @ Operstor [JE Boolean AL String P8 Node =) Number 7 Date & Time (2] BPEL | &
F
A o ot A] *
P S|

T [5 varidbles e Bl
#- GetDESInvoketut
(45 GetDESInvokeln

GetDESInvokeOUt -

21 o Getxanmwokeout GDESIWokeTn: -+
S || @5 Geivokeln GetxaDInvokeOLt -1
£
fgy| | (FdESinvoteOut GabiDimeokeln -
-5 FindDESlnwakeln r
-5 Find¥3DInvokeOLE parameters [& -5
L parameters Alunistyk.. & DoJeL .,

-4 tetum
- 1 FindkaDinvokeln
| [SavageBpel¥3DDESSeqCamposte
| [SavageBpelx3DDESSeqComposite
- Partner Lirks

(Z) Mavigator

url g§-

FindDESInwokeOut "3
FindDESInwokeIn "3

Allumistye... & Dol
tring

parameters =

Find¥3DInvokeOut -+
Findk3DInvokeln -
SSeqComposteOperationOut. -1

ESSeqCompositeOperationln -
Rartner Links 4%

Ll i - r| 4 M » ‘ i L

[output

& ® P Wicroron Octlook | @ BpelModulel -Net.. | "B N P TeongTheseDrafs... || [Protege exe g SO ssemat I v < BHWEE WECG 2mm

Figure 62. 'WSBPEL NetBeans mapper view with doXSLTransform.
doXSLTransform defines adaptation rules that resolve syntactic or/and semantic
mismatches between two parameters.

The Assign activity maps/copies from the output parameter/variable of one web
method to the input parameter of another web method. If there is a syntactic or semantic
mismatch between the two parameters, doXSLTransform can be inserted to define the
transformation rule that is required to translate between the two parameters (Figure 62).
doXSLTransform will form part of the assign construct. For SAVAGE web services,
InvokeX3DFind returns a list of X3D names and the corresponding URLS.
doXSLTransform extracts the X3D URL from the first item of the list. The name of the
style sheet is transfromX3DURLList. The output is compatible (syntactically and
semantically glued) with the input of InvokeDESFind and InvokeX3DGet.

Partner link represents a partner web service. Initiate invoke, reply and receive

web service activities will create a partner link with the SAVAGE web services. For

102

example, InvokeX3DFind web service invoke activity creates a partner link with the
findX3DModel web method from X3DWebService.

The Sequence structured activity is basically a container that organizes predefined
activities and executes them in sequential order. For the SAVAGE web service composite
workflow, InvokeX3DFind will trigger InvokeX3DGet or InvokeDESFind in sequence
depending on the if condition. The Sequence construct is also used for InvokeDESFind
and invokeDESGet when the isFindGetDES condition is true. If isGetX3DModel is true,
then InvokeX3DGet will be triggered. If neither Boolean variable is true, the composite

workflow does nothing.

The composite workflow is terminated by a web service reply, coupled with the
result string to the initiated web service SAVAGEBpelX3DDESSeqLink.

NetBeans BPEL dynamically generates WSBPEL in XML as one configures the
composite workflow in the NetBeans user interface. The result of the generated WSBPEL
in XML is provided in Appendix B.2.

103

D. SAVAGE WS ORCHESTRATION AND ADAPTATION USING OWL-S

SavageOWLSSematicWS Protégé 321 (file\C:\Users\lLenovo\ Documents\MDTS\NPS\Thesis\src\ OWL-5\SavageOWLS SematicWs pprj, OWL/ RDF Files)

Fie Edt Proect OWM. Code Tools Window Help

DGH +BE wd ¢% BEDH <> <P protégé

| @ Metalel (Orilogy 2074551 4onf) | OWLClasses: | I Froperlies | 4 hiiviuels | = Forms | OAL:S Eclr |
B B[R

3 INDIVIDUAL EDITOR o =FT:
— R oo __ i

For Individuak Pligetx ocieProfile instance of profile:Profile,
| pl:getx3DModelService For Ik 4 pgebCeDiodePro (instance of profile:Profile)

| p2:ind(3DModelService: D eR [Annotations m

| pa:findDESHodelService
|4 p4:etDESHodelService
‘ PS:X3DDESDecisionSer vice

Property ‘ Value | Lang ‘
rdfs.comment

-

| AL

profile:Profile §ox
pligetXiDModelProfile

|4 pfind¥3DNodePPrafie profilehas_process 6 Q, L 3 profilehasOutput 6 Q; L5 profile:serviceCategory é Q: <+

| p3:findDESHodelProfie 2 pt:retum @ ServiceCategory_getIDMadeProfie

| p:getDESHodeProfie

Q p3:X3DDESDecisionProfile

profile:serviceClassifieation P

Value Type

L]
v
| \
profiedhasParameter # & & poissiioPuimeis (XX
;i & X 2 il
|4 p:get(DilodeProcess @ 2\ ptretun
0pZ'md-ISDMndE\PmcEss" profile:serviceProduct 2 4}; ¥
|4 p3:findDESHodelProcess @ Valie
@ pa:etDESHlodelProcess @
il
st..SDDESDec\smancess i profilehasPrecondition & Q; % service:presentedBy & Qa Q,
(4 Savage X3D_DES Composte @ pl:ceti3DiodeiService

| L

Type

profilee ation ée e

grounding:WsdIGrounding ‘} ® X
4 p:qet3DhodslGrounding

| p2:find¥30ModelGrounding profile:hashesult € ﬁ < profilezservicellame £ R
Q p3:findDESModzlGrounding get¥3DModel

@ pd:qetDESHodelGrounding
Qpﬁ':lSDDESDec\smnGmundmg profileshasinput & Q, [profileztextDeseription s

‘?-Wurl ‘ shost bServices/X3DVVebServi

[aT

WEG 20

Figure 63. Protégé OWL-S editor can be used to describe semantic web services in
OWL-S.

The Protégé OWL-S plug-in (Figure 63) is written by SRI International. SRI is an
independent, nonprofit research institute conducting client-sponsored research and
development for government agencies, commercial businesses, foundations and other
organizations. SRI also brings its innovation to marketplace by licensing its intellectual

property and creating new ventures (http://www.sri.com/about).

104

p4geiDESModelGrounding provnding icPiDCosOritiding p4aetDESModelAtomicProcessGrounding
Bl IDModelGrounding grounding hasAtomicProcessGrounding
25 XADDESDecisionCrouding grovnding hasAtomicProcessGrounding

23 findDESModelGrounding

service describedhy

service:supporis

SErViCEpresents

service: describedd

servicessupparts

plastXIDModelService

SETViCEpresents

p5XIDDESDecision AtomicProcessGrounding

servicE:supporis

service describedfy

3 XIDDESDecisionService

service;presents

prounding icProcessGrounding

3 findDESModel icProcessGrounding

SErViCEsuppans

servicerdescribeddy 13 findDESModelProcess
SEIVIGEPresents

p3:findDESModeProfile

p2:findX3DModelProcess

4 ioP
p2:find 3DModelGrounding prounding essOriiig p2:find¥3DModel icProcessGrounding

p2findX3DModelProfile |
Ol

RN Kol SROML. @ Neteans DEST | B Leonghesebr.. || PR SovageOWSSe.. | [Graph Ovenicw | (RGN . < BT IUE W 25p1

service:supporis

p2:find Do del Service
SErViCE presents

Figure 64. Graph overview of SAVAGE OWL-S service profiles, processes and
groundings in Protége.

A Wizard in the plug-in is used to import SAVAGE web services WSDL into
OWL-S. OWL-S services, profiles, atomic processes for the web methods and WSDL
groundings are automatically established (See Figure 64). OWL-S is very expressive.
One can also add more descriptions on SAVAGE web services using the OWL-S plug-in,

such as service category, free text comments, etc.

105

R SavageOWLSSematicWS Protégé 321 (filedC:\Users\Lenovo\ Documents\MDTS\N PS\Thesis\sr\OWL-5\SavageQOWLSSematicWS.ppr, OWL/ RDF Files)

file Edt Proect OWL Code

DR 4EE &

Tools Window Help

B 4% Mk 4»

o 7 B[

:i'\/\sua\ Ecltar | Properties |

| @ Wetadets (Ontology1 20745514 o) | ClMClasses | B Properties | 4 nofvidusls | S Foms | OWL-S st

o¥ax
vice

Q p3:findDESModelService
| pd:getDESHadelService
0 pa:X3DDESDecisionSer vice

7"! B “[] Perform p4. getDESModelProcess 2
| V- Sequence
i iie Fax =[] Perform pt-get X3DModelProcsss @

PO O R

¥ Sequence

| Process graph 4Prupemes

HEa e

- [Perfom p5X3DDESD a
D Perform p2:find30ModelProcess @
V(& i.Then-Eise
¥ Sequence

| p1-aetk3DModelProfie
Q p2:find X30ModelProfie
| pa:fincDESModzlProfie
| pégetDESHodelProfie
0 Pp&:X30DESDecisionProfile

—

processiProcess §aox

|4 p1:getd DilodelProcess @

| p2 find}3DModelProcess @

0 p3:findDESHodzlPracess @

| p:getDESHodelProcess @

(@ p5(3DDESDecisiorProcess &

'@ Savage_X3D_DES_Composite ©

lodelGrounding
|4 p2:find¥3DModelGrounding
|4 p3:findDESMode(Grounding
Q pd:0etDESModelGrounding
Q p:X3DDESDecisionGrounding

rf D Perform p3:findDESModelProcess 9

sP/'xfﬁ.MatchDES

p3findDESModelProcess

‘ pd gotDESMode

|

(Startn |
1
p3I30DEDecisionFrocess

From |

| p5ODDESDecsionRsst | gl seanhTem |

‘ plfindXIDModePracess

J

/
J/

// troe(false

1]
| ol g6l XA ModeFrocess

[Process

/
\\. 4

WEG 260

Figure 65.

———————— i m T
I NetBeans IDEGY NPS' LeongThessDraftls... Protege.exe SavageC
]))

OWL-S editor.

SAVAGE OWL-S composite process constructed using the Protégé

A similar composite workflow sequence that was done in WSBPEL is created in

OWL-S (Figure 65). The composite process is a sequence. It starts off by performing

X3DDESDecisionProcess, which has input parameters searchTerm, isGetX3D (Boolean

type, to indicate whether to retrieve a X3D model from the SAVAGE repository) and

isGetMatchingDES (Boolean type, to indicate whether to find and get the matching DES

behavior model given the X3D model URL). An if-then-else construct is performed after
FindX3DModelProcess. FindX3DModelProcess will invoke findDESModelProcess and

then getDESModelProcess if the isGetMatchingDES variable is true. If isGetX3D

variable is true, then getX3DModelProcess will be invoked instead. The result string will

be an X3D model or DES model.

106

The Protégé OWL-S plug-in dynamically generates OWL-S in XML as one
configures the composite workflow on the user interface. The result of the generated
OWL-S in XML is in Appendix B-1.

E. COMPARISON BETWEEN WSBPEL AND OWL-S

OWL-S is based on RDF, RDFS and OWL. Hence, the language is more
expressive. For example, OWL-S is able to import WSDL and the information forms part
of OWL-S. OWL-S also enables specific description using comments, service category,
service classification, service precondition and contact information in service profile. It
also allows an instance of the service result to have additional process description such as
in-condition and has-result expressions. However, the adaptation required to address the
syntactic and semantic mismatches between two parameters of atomic processes is not
addressed in OWL-S.

On the other hand, WSBPEL has the assign construct. When coupled with
doXSLTransform, this is able to capture rules required to link two web services and
overcome heterogeneity/mismatch problems when different services use different
vocabularies. In general, WSBPEL is more established in the area of the service
orchestration layer as compared to OWL-S. Hence, WSBPEL has more comprehensive
basic web services and structured activities to construct composite workflows. On the
other hand, WSBPEL is not as expressive as OWL-S. WSBPEL is equivalent only to the
service model class of OWL-S. WSBPEL is not able to describe web services profile,
WSDL grounding, etc. Hence, WSBPEL needs to work with other open standards such as
WSDL and UDDI for a complete SOA solution.

F. COMPARISON BETWEEN WSMO AND OWL-S

It is reported that most of the elements/constructs described in OWL-S can be
modeled in WSMO (Lara et al., 2004). OWL-S is more detailed in the area of service
orchestration (realized by the service model) and WSDL grounding as compared to
WSMO. However, OWL-S does not have the adaption capability to resolve mismatch
problems between two web methods. On the other hand, WSMO has a mediator

component. Similar to the assign element in WSBPEL, the purpose of the mediator in

107

WSMO is to resolve syntactic and semantic mismatch problems between goals,

ontologies or web services. The types of WSMO mediators are ggMediators (between

two goals), ooMediators (between two ontologies), wgMediators (between web service

and goal) and wwMediators (between two web services). The details of the conceptual

comparison between OWL-S and WSMO are summarized in Table 2.

Comparison aspect

WSMO-Standard

OWL-S

Purpose Focused goal, specific Wide goal, does not focus on
application domains concrete application domains
Principles Explicit conceptual work and Not explicit, development
well-established principles based set of tasks to be solved
and foundations inherited from
other research areas
Coupling Loose coupling, independent Tighter coupling in several
definition of description aspects
elements
Extensibility Extensible in every direction Limited extensibility, mainly

through OWL subclassing

Implementation and

business layers

Will be clearly separated in
WSMO-Full

Overlapped at some points eg.

use of the Resource concept

Registry

Not dictated

Not dictated

Requester needs and

service capabilities

Two different points of view,
modeled independently and

linked via wgMediators

Not separated, unified view in

the service profile

Functionality

description

Explicit and complete

description

Does not describe some

aspects of the functionality

Non-functional

properties

Pre-defined properties. Flexible
extension but not explicit

mechanism

Few pre-defined properties.
Explicit extension mechanism

but improvable flexibility

108

Orchestration

Supports static and dynamic
composition, but under-defined

Limited dynamic composition,
completely defined

Grounding Multiple groundings, not pre- Problems with multiple
defined grounding groundings for atomic
processes, WSDL pre-defined
grounding
Mediation Scalable mediation between No mediation
loosely coupled elements
Layering 3-layers (WSMO-Lite, WSMO- | No layering (layering inherited
Standard, WSMO-Full) covering | from OWL, does not reflect
different complexity levels of complexity of the application
domain domain)
Languages F-Logic for logical expressions. | Language for conditions not
Ontology language not imposed | defined. Ontology language
OWL.
Table 2. Conceptual comparison between OWL-S and WSMO (From Lara et al.,

2004).

G. WSAIF SOFTWARE AGENTS+DATA=WEB SERVICES INTEGRATION
ON THE FLY

WSAIF creates the object oriented abstraction between the component application

programming interface (API) and the various SOA related open standards. The WSAIF
Orchestration component integrates open standards WSBPEL, OWL-S and WSMO. It

also exposes a common set of APIs that is used to interoperate with the APIs from other

WSAIF components. For example, WSAIFAbsSequence is the abstraction to the

sequencing of web services activities. WSAIFOwlsSequence and WSAIFBpelSequence

extends WSAIFAbsSequence and implements the sequence structure representation for
OWL-S and WSBPEL. WSAIF Orchestration provides generic API that receives
information about the sequence activities. The user does not need to know about the
details of the modeling language, which can be OWL-S, WSBPEL or both.

109

The WSAIF Orchestration also contains WSAIFServiceAgentFactory with the
purpose of generating corresponding service agents for each partnering atomic web
method that forms the composite process. Each service agent will acquire information on
web methods such as choreography, semantics and various adaptation logics. Adaptation
logics are subsumed under the WSAIF Adaption component. Service agents will work
together and resolve local interoperability issues between web methods.

At the global level, the WSAIFWorkflowAgent will acquire knowledge about the
orchestrated workflow and coordinate with the service agents. WSAIF MatchmakeAgent
will work with service agents to explore, match services and attempt to construct possible

orchestrated workflows.

Data for composite workflow structures can be captured in OWL-S, WSBPEL or
WSMO. Data for adaptation logic can be captured in the assign element in WSBPEL or
the mediator component in WSMO. These data are represented as XML and XML is
portable. In order words, when these data are shared in the network, coupled with WSAIF
software agents facilitating dynamic integration of web services into WSA, web services

integration on the fly is made possible from the perspective of a new user.

Hence, WSAIF orchestration software agents will enable capabilities such as
automating WS invocation, WS workflow coordination, WS workflow monitoring and

service-to-service adaptation.

H. SUMMARY

This chapter described the orchestration scenario for SAVAGE web services. This
was followed by the realization of the orchestration scenario using OWL-S and
WSBPEL. A comparison between OWL-S and WSBPEL was made based on observation
of the orchestrated composite process. Comparison of OWL-S and WSMO was
summarized from open literature. The chapter concluded by elaborating on the approach
to integrate WSAIF software agents and data model to enable web services integration on
the fly.

110

VIlI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This thesis described the motivation for WSAIF as an enabler for web services
integration on the fly. Its envisioned capabilities were covered in Chapter I1l. Chapter V
to VI covered the approach taken to explore the concept for the MOVES domain. Details
on the OO design of the SAVAGE web services were also discussed. The implementation
setup and test results for SAVAGE web services were covered in Chapter VI. The test
results were verified correct. Work showed that OWL-S, BPEL and WSMO are the
possible options to model the integration, orchestration and adaptation of web services in
a composite process. The comparison between the different modeling techniques was also
discussed. The thesis further explained how WSAIF software agents and modeling data

enable web services integration on the fly.

B. RECOMMENDATIONS FOR FUTURE WORK

Future work includes the survey, design and implementation of WSAIF
components. SAVAGE web services can be extended to include more web methods, such
as updating X3D and DES models. The logic for searching X3D and DES models can be
further enhanced by leveraging search engines such as Lucene. COTS search engines can
provide advanced search capabilities such as concept and pattern searches. SAVAGE
web services can incorporate a more complex and intelligent web method. The user does
need to know any specific input format or parameters. The intelligent web method takes
in a simple keyword. The web service receives the invocation request, which then
triggers the composite process modeled by WSBPEL or OWL-S. WSAIF facilitates the
execution of the composite process in the runtime environment. The result is parsed as
XML and will be returned with an associated schema. The schema will give clarity to

users on the format and meaning of the results.

It is also possible that the security architecture for XML Document-Centric

Security (Williams, 2008) can be incorporated into the WSAIF Security component.

111

Other tools and services such as a GeoServer Geographic Information System
(GIS) service can be integrated and discoverable as a web service so that WSAIF is able
to discover and match it with other services. Providing geographical information will

certainly add value to the WSAIF-composed business processes.

It will also be interesting to study the application of various Al planning
techniques on WSA and their effectiveness based on specific scenarios. The WSAIF
Agent component can incorporate suitable Al planning techniques that run on SOA-
related open standards. The WSAIF Agent then intelligently recommends and invokes the
most suitable Al planning technique with optimal parameters set based on the identified

scenario.

The Department of Defense Architecture Framework (DoDAF) defines a standard
way to organize an enterprise architecture (EA) or systems architecture into
complementary and consistent views. All major U.S. Government Department of Defense
(DoD) programs are required to adhere to the architecture views defined in DoDAF

(http://en.wikipedia.org/wiki/Department of Defense Architecture Framework). Hence,

the way forward is to incorporate DoDAF architecture views for the SAVAGE web

services.

Other work includes implementing the WSAIF framework to fully realize a
generic, flexible, scalable, usable and intelligent web service architecture. Future work
also includes the study and application of the WSAIF for global web-based simulation
and visualization, driven by net-centric tactical data. The WSAIF can also be applied and

tested in different domains.

112

APPENDIX A. SAVAGE WEB SERVICES SOURCE CODE

1. WSMETHODS CLASSES

WSMethods component contains Java classes X3DWebService.java and
DESWebService.java. These classes contain web methods findX3DModel, getX3DModel,
findDESModel and getDESModel. The web methods correspond to the four use cases for
SAVAGE web services.

a. X3DWebService.java
package X3DWSMethod;

import WSController._X3DFindStrategy;
import WSController._X3DGetStrategy;
import WSController_WSSingleton;
import WSController . WSStrategy;
import WSModel .WSCatalogReader;
import javax.jws.WebMethod;

import javax.jws.WebParam;

10 import javax.jws._WebService;

OCoO~NOUAWNE

22 @WebService()

23 public class X3DWebService {

24

25

26

27

28

29

30

31

32

33

34

35 @webMethod(operationName = “"findX3DModel™)
36 public String findX3DModel (@WebParam(name = ‘'searchTerm’™)
37 String searchTerm) {

38 X3DFindStrategy findStrategy =

39 new X3DFindStrategy(searchTerm);

113

40 String strategyResult =

41 executeWebServiceOperation(findStrategy);
42 //T0DO write your implementation code here:

43 return strategyResult;

44 }

45

46 /**

47 * Defines executeWebServiceOperation method.

48 * The method takes in an abstract WSStrategy.

49 * 1t execute the business operation base on the specific
50 * strategy passed in.

51 *

52 * @param WSStrategy Abstract Strategy

53 * @return Any return XML. Content depending on the
54 * specific strategy passed iIn

55 * @see

56 * @since

57 */

58 private String

59 executeWebServiceOperation(WSStrategy specificStrategy)
60 return (specificStrategy.executeOperation());

61 }

62

63 /**

64 * Defines Web Service Operation getX3DModel

65 * The purpose of this webmethod iIs to get X3D XML
66 * from Savage File Server

67 *

68 * @param searchTerm search term in String

69 * @return List of X3D URLs

70 * @see

71 * @since

72 */

73 @webMethod(operationName = "'getX3DModel™)

74 public String getX3DModel (@WebParam(name = "'url™)
75 String url) {

76 //T70D0 write your implementation code here:

77 X3DGetStrategy getStrategy = new X3DGetStrategy(url);
78 String strategyResult =

79 executeWebServiceOperation(getStrategy);
80 return strategyResult;

81
82 }

b. DESWebService.java

1 package DESWSMethod;

2

3 import WSController.DESFindStrategy;

4 import WSController _DESGetStrategy;

5 import WSController_WSStrategy;

6 import javax.jws.WebMethod;

7 import javax.jws.WebParam;

8 import javax.jws.WebService;

9

10 /**

114

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Bk % 4

*
N

This class defines the webmethods for SAVAGE DES Webservice

<p>
Currently, 2 webmethods are developed, namely :
findDESModel and getDESModel

@author Leong, Hoe Wai
@version %1%, %G%
@since

@webService()
public class DESWebService {

/**

Defines Web Service Operation findDESModel

The purpose of this webmethod is to find associated DES
behavior given X3D URL. The information is found in
SavageCatalog, within SMAL

@param x3durl The X3D URL
@return List of associated DES URLs

@see

@since

ok X o % ok X % %

*/
@webMethod(operationName = "findDESModel')
public String findDESModel (@WebParam(name = ""x3dUrl")
String x3durl) {
//T0DO write your implementation code here:
DESFindStrategy findStrategy = new DESFindStrategy(x3durl);
String strategyResult =
executeWebServiceOperation(findStrategy);
return strategyResult;

}

/**
* Defines Web Service Operation getDESModel

* The purpose of this webmethod is to get DES XML

* given DES URL. The information is found in Savage fTile server
*

* @param desUrl The DES URL

* @return DES XML

* @see

* @since

*/

@webMethod(operationName = "‘getDESModel')

public String getDESModel (@WebParam(name = "‘desUrl™)

String desUrl) {
//T0D0O write your implementation code here:
DESGetStrategy getStrategy = new DESGetStrategy(desUrl);
String strategyResult =

executeWebServiceOperation(getStrategy);

return strategyResult;

}

/**
* Defines executeWebServiceOperation method.

115

67 * The method takes iIn an abstract WSStrategy.

68 * 1t execute the business operation base on the specific
69 * strategy passed in.

70 *

71 * @param WSStrategy Abstract Strategy

72 * @return Any return XML. Content depending on the
73 * gpecific strategy passed in

74 * @see

75 * @since

76 */

77 private String

78 executeWebServiceOperation(WSStrategy specificStrategy) {
79 return (specificStrategy.executeOperation());

80

81 }

2. WSCONTROLLER CLASSES

WSController component contains Java classes that realize the strategy for each
web method. WSSingleton.java creates and maintains the global static/single instance of
a particular class or model. WSUTtility.java basically contains reusable utility operations

such as getContentFromFile.

a. WSStrategy.java

1/*
2 * To change this template, choose Tools | Templates
3 * and open the template in the editor.

4 =/

5

6 package WSController;

; /**

9 * This is an abstract WSStrategy class

10 =

11 * @author Leong, Hoe Wai

12 * @version %1%, %G%

13 * @since

14 =/

15 public abstract class WSStrategy {

16 /**

17 * Abstract method for executing web service strategy
18 *

19 * @param

20 * @return String Return XML depending on the specific
21 * strategy executed

22 * @see

23 * @since

24 */

25 public abstract String executeOperation();
26 }

116

O©CoO~NOOOITA~AWNPE

b. X3DFindStrategy.java

package WSController;

import
import
import
import
import
import
import
import
import
import

public

WSModel . X3DFindResultEntity;
Java.io.StringWriter;

jJava.util _HashMap;

Java.util _StringTokenizer;
org.exolab.castor.xml _Marshaller;
org.w3c.dom.Attr;
org.w3c.dom.Document;
org.w3c.dom.NamedNodeMap;
org.w3c.dom.Node;
org.w3c.dom.NodelList;

class X3DFindStrategy extends WSStrategy {

private String inputStr;
private String outputStr;
private HashMap<String,String> findResultSet;

public X3DFindStrategy(String input) {

}

this.setlnputStr(input);
findResultSet = new HashMap<String,String>(Q);

public String getlnputStr() {

}

return InputStr;

public void setlnputStr(String inputStr) {

}

this.inputStr = inputStr;

public String getOutputStr() {

}

return outputStr;

public void setOutputStr(String outputStr) {

}

this.outputStr = outputStr;

public HashMap<String,String> getFindResultSet() {

}

return findResultSet;

public void

setFindResultSet(HashMap<String,String> findResultSet) {
this.findResultSet = findResultSet;

117

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

public String executeOperation() {

System.out.printIn(""'X3DFindStrategy : start executing ' +
"X3DFindStrategy ... ');
Document catalogDocument =WSSingleton.getCatalogDocument();
iterateChild(catalogDocument) ;
X3DFindResultEntity resultEntity =
new X3DFindResultEntity(this.getFindResultSet());
StringWriter striWrite = new StringWriter();
try {
Marshaller marshaller = new Marshaller(striWrite);
marshaller_marshal (resultEntity);
} catch (Exception ex) {

System.out._printIn(Exception : "+ex);
s
System.out.printIn(""X3DFindStrategy : end executing " +
"X3DFindStrategy ... ');

return striWrite.toString(Q);

private void iterateChild(Node node) {

String nodeName;

NodeList childList = node.getChildNodes();

int childListLength = childList.getLength();

for (int i=0; i<childListLength; i++) {
Node currentNode = childList.item(i);
nodeName = currentNode.getNodeName();

if (nodeName.compareTo(''Page')==0)
searchPage(currentNode);

iterateChild(currentNode);

118

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

private void searchPage(Node currentNode) {

boolean isFound = false;
String urlTemp=""";
String nameTemp=""";
NamedNodeMap attrs = currentNode.getAttributes();
int len = attrs.getlLength(Q);
for (int j=0; j<len; j++) {
Attr attr = (Attr)attrs.item(j);

if (attr.getNodeName().compareTo("'url')==0)
urlTemp = attr.getNodeValue();

it (attr.getNodeName().compareTo(''name')==0)
nameTemp = attr.getNodeValue();

it ((attr.getNodeName() .compareTo(‘'name™)==0) &&
(attr._.getNodeValue() .compareTo(inputStr)==0))
isFound=true;

it ((attr.getNodeName().compareTo("'title')==0) &&
(attr.getNodeValue() .compareTo(inputStr)==0))
isFound=true;

if (attr.getNodeName() .compareTo("'description')==0)
it (searchDescription(attr.getNodeValue()))
isFound=true;

}

it (isFound)
this.getFindResultSet().put(nameTemp, urlTemp);

private boolean searchDescription(String description) {

boolean isSearchDesc=false;
StringTokenizer descTokens =
new StringTokenizer(description,” ');

119

167
168
169
170
171
172
173

1p

OCO~NOOOP_WN

while (descTokens.hasMoreTokens())
iT (descTokens.nextToken().compareTo(inputStr)==0)
isSearchDesc=true;

return isSearchDesc;

}
C. X3DGetStrategy.java
ackage WSController;

import java.util._StringTokenizer;

public class X3DGetStrategy extends WSStrategy {
private String inputStr;

public X3DGetStrategy(String input) {
this.setlnputStr(input);
}

public String getlnputStr() {
return inputStr;
}

public void setlnputStr(String inputStr) {
this.inputStr = InputStr;
}

public String executeOperation() {
System.out._printIn('X3DGetStrategy : start executing *
""X3DGetStrategy ... ");
String beginFilePath = WSSingleton.getSavagePath();
StringTokenizer token =
new StringTokenizer(this.getlnputStr(),"/");

while (token.hasMoreTokens())
iT (token.nextToken() .compareTo('Savage')==0)

120

+

47 break;

48
49 String remainFilePath = ""';
50 while (token.hasMoreTokens())
51 remainFilePath=
52 remainFilePath.concat(''/""+token.nextToken());
53
54 String fileLocation = beginFilePath+remainFilePath;
55 String xmlStr = WSUtility.getContentsFromFile(fileLocation);
56
57 System.out._printIn("'X3DGetStrategy : end executing ' +
58 "X3DGetStrategy ... ');
59 return xmlStr;
60 }
61 }
d. DESFindStrategy.java

1 package WSController;

2

3 import WSModel .DESFindResultEntity;

4 import java.io.StringWriter;

5 import java.util _HashMap;

6 import org.exolab.castor.xml _Marshaller;

7 import org.w3c.dom._Attr;

8 import org.w3c.dom.Document;

9 import org.w3c.dom.NamedNodeMap;

10 import org.w3c.dom.Node;
11 import org.w3c.dom.NodeList;

20 public class DESFindStrategy extends WSStrategy {
21 private String inputStr;
22 private String outputStr;
23 private HashMap<String,String> findResultSet;

25 public DESFindStrategy(String input) {

26 this.setlnputStr(input);

27 findResultSet = new HashMap<String,String>();
28 }

30 public String getlnputStr(Q {
31 return inputStr;
32 }

34 public void setlnputStr(String inputStr) {
35 this.inputStr = inputStr;
36 }

38 public String getOutputStr() {
121

39 return outputStr;

40 }

41

42 public void setOutputStr(String outputStr) {

43 this.outputStr = outputStr;

44 }

45

46 public HashMap<String, String> getFindResultSet() {
47 return findResultSet;

48 }

49

50 public void setFindResultSet

51 (HashMap<String, String> findResultSet) {
52 this.findResultSet = findResultSet;

53 }

54

55

56

57

58

59

60

61

62

63

64

65

66 public String executeOperation() {

67 System._out_printIn(""DESFindStrategy : start executing " +
68 "DESFindStrategy ... ');

69 Document catalogDocument =WSSingleton.getCatalogDocument();
70 iterateChild(catalogDocument) ;

71 DESFindResultEntity resultEntity =

72 new DESFindResultEntity(this.getFindResultSet());
73 StringWriter striWrite = new StringWriter();
74 try {

75 Marshaller marshaller = new Marshaller(striWWrite);
76 marshaller _marshal (resultEntity);

77 } catch (Exception ex) {

78 System.out.printIn("Exception : "+ex);

79 }

80 return striWrite._toString(Q);

81 }

82

83

84

85

86

87

88

89

90

91 private void iterateChild(Node node) {

92 String nodeName;

93 NodeList childList = node.getChildNodes();

94 int childListLength = childList.getLength();

122

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

for (int i=0; i<childListLength; i++) {
Node currentNode = childList.item(i);
nodeName = currentNode.getNodeName();

iT (nodeName.compareTo(''Page’)==0)
ifT (isX3D(currentNode))
extractBehavior(currentNode);

iterateChild(currentNode);

private boolean isX3D(Node node) {
boolean isFound=false;
NamedNodeMap attrs = node.getAttributes();
int len = attrs.getlLength(Q);
for (int j=0; j<len; j++) {
Attr attr = (Attr)attrs.item(j);
if (attr._.getNodeName().compareTo("'url')==0)
if (attr._getNodeValue() .compareTo(inputStr)==0)
isFound=true;

}

return isFound;

private void extractBehavior(Node node) {
String nodeName=""";
String agentTemp=""";
NodeList childList = node.getChildNodes();
int childListLength = childList.getlLength();
for (int 1=0; i<childListLength; i++) {
Node currentNode = childList.item(i);
nodeName = currentNode.getNodeName();
if (nodeName.compareTo(“'SimulationAgent™)==0) {
NamedNodeMap attrs = currentNode.getAttributes();
int len = attrs.getLength();
for (int j=0; j<len; j++) {
Attr attr = (Attr)attrs.item(g);

123

151
152
153
154
155
156
157
158
159
160
161 }

ifT (attr.getNodeName().compareTo(‘'agent')==0)

agentTemp=attr.getNodeValue();

ifT (attr._.getNodeName().compareTo("'url')==0)

this.getFindResultSet() .put(agentTemp,
attr_getNodeValue());

}
}

extractBehavior(currentNode);

e. DESGetStrategy.java

1 package WSController;

O©CoO~NOOOA~WN

import java.util._StringTokenizer;

12 public class DESGetStrategy extends WSStrategy {

private String inputStr;

public DESGetStrategy(String input) {
this.setlnputStr(input);
}

public String getlnputStr(Q {
return InputStr;
}

public void setlnputStr(String inputStr) {
this.inputStr = inputStr;
}

public String executeOperation() {
System.out.printIn("'DESGetStrategy :- start executing ™
"DESGetStrategy ... ');
String beginFilePath = WSSingleton.getViskitModelPath();
StringTokenizer token =
new StringTokenizer(this.getlnputStr(),"'/");

124

43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 }

OCoO~NOOUITAWNE

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

while (token.hasMoreTokens())
it (token._.nextToken().compareTo(''ViskitModels')==0)
break;

String remainFilePath = ""';
while (token.hasMoreTokens())
remainFilePath=
remainFilePath.concat('/"+token.nextToken());

String fileLocation = beginFilePath+remainFilePath;
String xmlStr = WSUtility.getContentsFromFile(fileLocation);

System.out._printIn("'DESGetStrategy : end executing ™ +
"DESGetStrategy ... '");
return xmlStr;

f. WSSingleton.java
package WSController;

import WSModel .WSCatalogReader;
import java.io.FilelnputStream;
import java.io.lOException;
import java.io.lnputStream;
import java.util _Properties;
import org.w3c.dom.Document;

public class WSSingleton {
private static Document catalogDocument;
private static String PROPERTIES FILE NAME =
""SavageWebServices.properties’;
private static Properties configuration;

public WSSingleton() {
3

public static String getCatalogFilePath() {
it (configuration==null) {
InputStream in = WSSingleton.class.getResourceAsStream
(PROPERTIES_FILE_NAME);
configuration = new Properties();

try {
125

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

configuration.load(in);
} catch (10Exception e) {
System.out.printIn("Exception at " +
""getCatalogFilePath : "+e);
}
}
return (String)configuration.get('catalogFilePath™);
}

public static Document getCatalogDocument() {
if (catalogbDocument==null) {

WSCatalogReader catalogReader = new WSCatalogReader
(WSSingleton.getCatalogFilePath(+
WSSingleton.getCatalogFileName());

catalogReader.savageCatalogConstruct();

WSSingleton.setCatalogDocument
(catalogReader .getDocument());

}

return catalogDocument;

}

public static void setCatalogDocument
(Document catalogDocument) {
WSSingleton.catalogDocument = catalogDocument;

}

public static String getCatalogFileName() {
ifT (configuration==null) {
InputStream in = WSSingleton.class.getResourceAsStream
(PROPERTIES_FILE_NAME);
configuration = new Properties();
try {
configuration.load(in);
} catch (10Exception e) {
System.out.printIn("Exception at " +
"getCatalogFileName : "+e);

}

return (String)configuration.get('catalogFileName™);

}

public static String getSavagePath() {
if (configuration==null) {
InputStream in = WSSingleton.class.getResourceAsStream
(PROPERTIES_FILE_NAME);
configuration = new Properties();
try {
configuration.load(in);
} catch (10Exception e) {
System.out.printIn("Exception at " +
"getSavagePath : "+e);
}
}
return (String)configuration.get(''savagePath™);

}

public static String getViskitModelPath() {
126

93
94
95
96
97
98
99
100
101
102
103
104
105
106

O©CoO~NOUITAWNPRF

}

if (configuration==null) {
InputStream in = WSSingleton.class.getResourceAsStream
(PROPERTIES_FILE_NAME);
configuration = new Properties();
try {
configuration.load(in);
} catch (10Exception e) {
System.out.printIn('Exception at " +
"getViskitModelPath : "+e);
}
}
return (String)configuration.get('viskithModelPath™);

g. WSUtility.java

package WSController;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileReader;
import java.io.lOException;

public class WSUtility {

public static String getContentsFromFile(String fileStr) {
StringBuilder contents = new StringBuilder();
File aFile = new File(fileStr);

try {
BufferedReader input = new BufferedReader
(new FileReader(aFile));
try {
String line = null;
while ((C line = input.readLine()) = null){
contents.append(line);
contents.append(System.getProperty("'line.separator));
}
}

127

40 finally {

41 input.close();

42 }

43 }

44 catch (10Exception ex){
45 ex.printStackTrace();
46 }

47

48 return contents.toString();
49 3}

50

51 }

3. WSMODEL CLASSES

WSModel component contains Java classes that read and construct the SAVAGE
catalog in DOM. The instances of X3DFindResultEntity.java and
DESFindResultEntity.java are used to encapsulate web methods return results before they

are parsed as XML.

a. WSCatalogReader.java

1 package WSModel;

2

3

4 import java.io.File;

5 import java.io.FileNotFoundException;

6 import javax.xml_parsers.DocumentBuilder;

7 import javax.xml_parsers.DocumentBuilderFactory;
8 import javax.xml_parsers.FactoryConfigurationError;
9 import javax.xml.parsers.ParserConfigurationException;
10 import org.-w3c.dom.Document;

11

12

13

14

15

16

17

18

19 public class WSCatalogReader {

20 private Document document;

21 private String catalogFileName;

22

23 public WSCatalogReader(String catalogFile)
24 {

25 this.setCatalogFileName(catalogFile);

26 }

27

28

29

30

128

31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

*
*
*
*

*/
pub
{

}
pub

}
pub

@param
@return

@see

@since
lic void savageCatalogConstruct()

System.out.printIn("'X3DCatalogBuilder : Savage Catalog " +
construct started ... ');
try
{
DocumentBuilderFactory factory =
DocumentBui lderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();

if (builder.isNamespaceAware()) {
System.out.printIn("'X3DCatalogBuilder is " +
"namespace aware');
} else {

System.out._printIn('X3DCatalogBuilder is not " +
""namespace aware');

}

ifT (builder.isvalidating(Q)) {
System._out._printIn('X3DCatalogBuilder is " +
"validation capable');
} else {

System.out.printIn("'X3DCatalogBuilder is not " +
"validation capable');

}

this.setDocument(builder.parse(new File
(this.getCatalogFileName())));

} catch (ParserConfigurationkException pce) {
System.out.printIn("'ParserConfigurationException " +
"occured:"'+pce);
} catch (FactoryConfigurationError fce) {
System._out_printIn('FactoryConfigurationError " +
"occured:"+fce);
} catch (FileNotFoundException fnfe) {
System.out.printIn("'FileNotFoundException occured:*
+fnfe);
} catch (Exception ex) {
System.out.printIn("’'Other exception occured: "+ex);
}

System.out.printIn("’X3DCatalogBuilder : Savage Catalog " +

"construct completed ... ");

lic String getCatalogFileName() {
return catalogFileName;

lic void setCatalogFileName(String catalogFileName) {
this.catalogFileName = catalogFileName;

129

87 }

88

89 public Document getDocument() {
a0 return document;

91 }

92

93 public void setDocument(Document document) {
94 this.document = document;
95 }

96

97 }

b. X3DFindResultEntity.java

package WSModel ;

1
2
3
4
5
6
7
8 import java.util._HashMap;
9
10
11
12

13

14 public class X3DFindResultEntity {

15 private HashMap<String,String> resultSet;

16

17 public X3DFindResultEntity(HashMap<String,String> map) {
18 this.setResultSet(map);

19 }
20
21 public HashMap<String,String> getResultSet() {
22 return resultSet;
23 }
24
25 public void setResultSet(HashMap<String,String> resultSet) {
26 this.resultSet = resultSet;
27 }
28 }

C. DESFindResultEntity.java

1 package WSModel;

2

3 import java.util_HashMap;

4

5

6

7

8

9

10

11

130

12
13 public class DESFindResultEntity {

14 private HashMap<String,String> resultSet;
15
16 public DESFindResultEntity(HashMap<String,String> map) {
17 this.setResultSet(map);
18 }
19
20 public HashMap<String,String> getResultSet() {
21 return resultSet;
22 }
23
24 public void setResultSet
25 (HashMap<String,String> resultSet) {
26 this.resultSet = resultSet;
27 }
28 }
d. Savage Catalog

Savage Catalog URL is found in
https://savage.nps.edu/Savage/ContentCatalogSavage.xml

4. GENERATED RESOURCES

Generated resources are Java classes, WSDL and schemas auto-generated by
JAX-WS. The generated Java classes correspond to the four web methods. JAXB is used

to parse the Java classes into WSDL and associated schemas.

a. FindX3DModel.java

package X3DWSMethod. jaxws;

import javax.xml_bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml_bind.annotation_XmlElement;
import javax.xml_bind.annotation.XmlIRootElement;
import javax.xml_bind.annotation._XmlType;

=
QOWO~NOUITAWNPE

@XmIRootElement(name = "TindxX3DModel'™, namespace =
"http://X3DWSMethod/ ")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "findX3DModel™, namespace =
"http://X3DWSMethod/"")

public class FindX3DModel {

e e
OUAWN R

17 @xmlElement(name = ''searchTerm', namespace = ")
18 private String searchTerm;

19

20

21

131

22

23
24
25 public String getSearchTerm() {
26 return this.searchTerm;
27 }
28
29
30
31
32
33
34 public void setSearchTerm(String searchTerm) {
35 this.searchTerm = searchTerm;
36 }
37
38 }
b. FindX3DModelResponse.java
1
2 package X3DWSMethod.jaxws;
3
4 import javax.xml.bind.annotation.XmlAccessType;
5 import javax.xml_bind.annotation.XmlAccessorType;
6 import javax.xml_bind.annotation_XmlElement;
7 import javax.xml_bind.annotation.XmlRootElement;
8 import javax.xml_bind.annotation._XmlType;
9
10 @XmIRootElement(name = "findX3DModelResponse',

=
=

namespace = “"http://X3DWSMethod/™)
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "findX3DModelResponse™,
namespace = "http://X3DWsMethod/ ™)
public class FindX3DModelResponse {

e
NoOoOhWN

@xmlElement(name = "‘return', namespace = ')
private String _return;

NNNNNDNPRERE
ARrWNPFPOOO®

public String getReturn() {
return this._return;
}

WWWWWNNNN
A WONPFRPOOWONO

public void setReturn(String _return) {
this._return = _return;
}

W w
o 01

132

OCoO~NOUTAWNE

QOWONOUITAWNLE

=

C. GetX3DModel.java

package X3DWSMethod. jaxws;

import javax.xml_bind.annotation.XmlAccessType;
import javax.xml_bind.annotation.XmlAccessorType;
import javax.xml._.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml_bind.annotation.XmlType;

@XmlRootElement(name = "getX3DModel",
namespace = "‘http://X3DWSMethod/")
@XmlAccessorType(XmlAccessType.FIELD)
@XmIType(name = "getX3DModel™",
namespace = "‘http://X3DWSMethod/™)
public class GetX3DModel {

@xmIElement(name = ""url", namespace = ')
private String url;

public String getUrl() {
return this.url;
}

public void setUrl(String url) {
this.url = url;
}

d. GetX3DModelResponse.java

package X3DWSMethod. jaxws;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml_bind.annotation.XmlAccessorType;
import javax.xml_bind.annotation.XmlElement;
import javax.xml_bind.annotation.XmlIRootElement;
import javax.xml_bind.annotation._XmlType;

@XmIRootElement(name = "getX3DModelResponse'™, namespace =
133

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

O©CoO~NOOOITA~AWNPE

25

"http://X3DWSMethod/"")
@XmlAccessorType(XmlAccessType.FIELD)
@XmIType(name = "getX3DModelResponse', namespace =
"http://X3DWSMethod/ ™)

public class GetX3DModelResponse {

@XmlElement(name = “return’, namespace = "''")
private String _return;

public String getReturn() {
return this._return;
}

public void setReturn(String _return) {
this. _return = _return;
}

e. FindDESModel.java

package DESWSMethod. jaxws;

import javax.xml_bind.annotation.XmlAccessType;
import javax.xml_bind.annotation.XmlAccessorType;
import javax.xml_bind.annotation.XmlElement;
import javax.xml_bind.annotation.XmlRootElement;
import javax.xml._.bind.annotation.XmlType;

@XmIRootElement(name = "findDESModel', namespace =
"http://DESWSMethod/ ™)

@XmlAccessorType(XmlAccessType.FIELD)

@XmIType(name = ""findDESModel™, namespace =
"http://DESWSMethod/™")

public class FindDESModel {

@XmlElement(name = "x3dUrl", namespace = ")
private String x3DUrl;

public String getX3DUrl () {
134

26
27
28
29
30
31
32
33
34
35
36
37
38

O©CoO~NOUITAWNPRF

return this.x3DUrl;

public void setX3DUrl(String x3DUrl) {
this.x3DUrl = x3DUrl;
}

f. FindDESModelResponse.java

package DESWSMethod. jaxws;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml_bind.annotation_XmlElement;
import javax.xml_bind.annotation.XmlRootElement;
import javax.xml_bind.annotation._XmlType;

@XmIRootElement(name = "findDESModelResponse', namespace =
"http://DESWSMethod/ ")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "findDESModelResponse', namespace =
"http://DESWSMethod/)

public class FindDESModelResponse {

@xmlElement(name = "‘return’, namespace = ')
private String _return;

public String getReturn() {
return this._return;
}

public void setReturn(String _return) {
this._return = _return;
}

135

O©CoO~NOOITAWNPE

g. GetDESModel.java

package DESWSMethod. jaxws;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml_bind.annotation.XmlAccessorType;
import javax.xml_bind.annotation.XmlElement;
import javax.xml_bind.annotation.XmlRootElement;
import javax.xml._.bind.annotation.XmlType;

@XmIRootElement(name = *‘getDESModel™, namespace =
"http://DESWSMethod/ ™)

@XmlAccessorType(XmlAccessType.FIELD)

@XmIType(name = ""getDESModel', namespace =
"http://DESWSMethod/ ™)

public class GetDESModel {

@XmlElement(name = "desUrl", namespace = ")
private String desUrl;

public String getDesUrl() {
return this.desUrl;
3

public void setDesUrl(String desUrl) {
this.desUrl = desUrl;
}

h. GetDESModelResponse.java

package DESWSMethod. jaxws;

import javax.xml_bind.annotation.XmlAccessType;
import javax.xml_bind.annotation.XmlAccessorType;
import javax.xml._.bind.annotation.XmlElement;
import javax.xml_bind.annotation.XmlRootElement;
import javax.xml_bind.annotation.XmlType;

@XmlRootElement(name = "getDESModelResponse', namespace =
"http://DESWSMethod/"")

@XmBAccessorType(XmlAccessType.FIELD)

@XmlType(name = "getDESModelResponse’™, namespace =

136

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

OCoO~NOUITAWNPR

“http://DESWSMethod/™)
public class GetDESModelResponse {

@XmlElement(name = “return’, namespace = ")
private String _return;

public String getReturn() {
return this. _return;
3

public void setReturn(String _return) {
this._return = _return;
}

i. X3DWebServiceService.wsdl

<?xml version="1.0" encoding="UTF-8" standalone=""yes"'?>

<definitions targetNamespace="http://X3DWSMethod/""
name=""X3DWebServiceService"
xmIns="http://schemas.xmlsoap.org/wsdl/"
xmIns:tns="http://X3DWSMethod/""
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmlIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"'">
<types>
<xsd:schema>
<xsd:import namespace="http://X3DWSMethod/""
schemalLocation="X3DWebServiceService schemal.xsd"/>
</xsd:schema>
</types>
<message name=""findX3DModel"">
<part name="parameters”™ element=""tns:findX3DModel"/>
</message>
<message name=""findX3DModelResponse"'>
<part name="parameters” element="tns:findX3DModelResponse"/>
</message>
<message name="‘getX3DModel"">
<part name="parameters” element=""tns:getX3DModel"/>
</message>
<message name="‘getX3DModelResponse’'>
<part name="‘parameters’ element=""tns:getX3DModelResponse"/>
</message>
<portType name="'X3DWebService'>

137

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

O©CoO~NOOITAWNPR

<operation name="findX3DModel''>
<input message=""tns:findX3DModel'/>
<output message="tns:findX3DModelResponse'/>
</operation>
<operation name='getX3DModel'>
<input message="'tns:getX3DModel"/>
<output message="tns:getX3DModelResponse'/>
</operation>
</portType>
<binding name=""X3DWebServicePortBinding" type=""tns:X3DWebService">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="findX3DModel''>
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
<operation name="getX3DModel'>
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="X3DWebServiceService'>
<port name=""X3DWebServicePort"
binding=""tns:X3DWebServicePortBinding'>
<soap:address location="REPLACE WITH_ ACTUAL_URL"/>
</port>
</service>
</definitions>

J. X3DWebServiceService_schemal.xsd
<?xml version="1.0" encoding="UTF-8" standalone="'yes"'?>
<xs:schema version="1.0" targetNamespace="http://X3DWSMethod/"
xmIns:tns="http://X3DWSMethod/"
xmlIns:xs="http://www.w3.0rg/2001/XMLSchema''>
<xs:element name="findX3DModel" type=""tns:findX3DModel"/>

<xs:element name=""findX3DModelResponse"
type=""tns:findX3DModelResponse"'/>

<xs:element name="getX3DModel™ type=""tns:getX3DModel" />

<xs:element name="'getX3DModelResponse"
type=""tns:getX3DMode lResponse' />

138

16 <xs:complexType name="getX3DModel"'>

17 <Xs:sequence>

18 <xs:element name="url" type=""xs:string” minOccurs="0"/>

19 </Xs:sequence>

20 </xs:complexType>

21

22 <xs:complexType name="getX3DModelResponse'>

23 <Xs:sequence>

24 <xs:element name="return" type="xs:string"” minOccurs="0"/>
25 </Xs:sequence>

26 </xs:complexType>

27

28 <xs:complexType name="findX3DModel"">

29 <Xs:sequence>

30 <xs:element name="'searchTerm' type=''xs:string'" minOccurs="0"/>
31 </xs:sequence>

32 </xs:complexType>

33

34 <xs:complexType name=""findX3DModelResponse''>

35 <XSs:sequence>

36 <xs:element name="‘return" type="Xs:string" minOccurs="0"/>
37 </xs:sequence>

38 </xs:complexType>
39 </xs:schema>

k. DESWebServiceService.wsdl

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2

3

4 <definitions targetNamespace="http://DESWSMethod/""

5 name="DESWebServiceService"

6 xmIns="http://schemas.xmlsoap.org/wsdl/"

7 xmIns:tns="http://DESWSMethod/"

8 xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

9 xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"'">
10 <types>

11 <xsd:schema>

12 <xsd:import namespace="http://DESWSMethod/""

13 schemalocation=""DESWebServiceService_schemal.xsd"/>
14 </xsd:schema>

15 </types>

16 <message name=""findDESModel"'>

17 <part name="parameters" element=""tns:findDESModel"/>

18 </message>

19 <message name=""findDESModelResponse’>

20 <part name="parameters” element="tns:findDESModelResponse' />
21 </message>

22 <message name="‘getDESModel"'">

23 <part name="parameters" element=""tns:getDESModel"'/>

24 </message>

25 <message name="'‘getDESModelResponse''>

26 <part name="parameters” element="tns:getDESModelResponse"/>
27 </message>

28 <portType name="'DESWebService'>

29 <operation name="findDESModel"'">

139

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

OCoO~NOOUITAWNPRF

<input message=""tns:findDESModel"'' />
<output message="tns:findDESModelResponse' />
</operation>
<operation name='"getDESModel'>
<input message="'tns:getDESModel" />
<output message='"tns:getDESModelResponse' />
</operation>
</portType>
<binding name="DESWebServicePortBinding" type=""tns:DESWebService'>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style=""document"/>
<operation name="findDESModel">
<soap:operation soapAction="""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
<operation name='"getDESModel"''>
<soap:operation soapAction="""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="DESWebServiceService'>
<port name="DESWebServicePort"
binding=""tns:DESWebServicePortBinding'>
<soap:address location=""REPLACE_WITH_ACTUAL_URL"/>
</port>
</service>
</definitions>

l. DESWebServiceService_schemal.xsd

<?xml version="1.0" encoding="UTF-8" standalone="'yes"'?>

<xs:schema version="1.0" targetNamespace=""http://DESWSMethod/
xmIns:tns="http://DESWSMethod/""
xmIns:xs="http://www.w3.0rg/2001/XMLSchema'">

<xs:element name="findDESModel" type=""tns:findDESModel" />

<xs:element name=""findDESModelResponse"
type=""tns: FfindDESMode IResponse"/>

<xs:element name="‘getDESModel™ type=""tns:getDESModel" />

<xs:element name="getDESModelResponse"
type=""tns:getDESMode lResponse'' />

<xs:complexType name=""getDESModel"'>

140

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

5.

<XS:sequence>
<xs:element name="'desUrl" type="Xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="'getDESModelResponse''>
<XS:sequence>
<xs:element name="return"”™ type="xs:string"” minOccurs="0"/>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="findDESModel"">
<Xs:sequence>
<xs:element name="x3dUrl" type="xs:string"” minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="FfindDESModelResponse’>
<xs:sequence>
<xs:element name="'return' type="Xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

JSP CLIENT

JSP client is developed to demonstrate client invocation of SAVAGE web

services (aka use cases). It is also used to test and verify that the results returned by

SAVAGE web services are correct.

=
QOO ~NOUDWNEPE

NNRPRRRPRRRERRR
RPOOO~NOUANWNER

a. index.jsp
<%--
Document : index
Created on : Oct 13, 2008, 10:22:14 PM
Author : Leong, Hoe Wai
__0/0>
<% @page contentType=""text/html"” pageEncoding="UTF-8"%>
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
“http://www.w3.org/TR/html4/1oose.dtd >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<title>JSP Page</title>
</head>
<body>
<h2>Welcome to SAVAGE Web Services Test Page</h2>
<form action="SavageWSClientServilet._jsp'>
<input type="radio”™ name="webmethod"” value="findX3DModel">

141

22 FindX3DModel
23

24 <input type="‘radio’” name="webmethod"™ value="getX3DModel">
25 getX3DModel
26

27 <input type="radio"” name="webmethod"™ value="findDESModel">
28 findDESModel
29

30 <input type="‘radio” name="webmethod"™ value="getDESModel"'>
31 getDESModel
32

33

34 <input type="text" name="Input'>
35 <input type="'submit" value="Invoke Web Service">
36 </form>
37 </body>
38 </html>
b. SavageWSClientServlet.jsp
1 <%--
2 Document : SavageWSClientServlet
3 Created on : Oct 13, 2008, 11:42:29 PM
4 Author :Leong, Hoe Wai
5 --%>
6
7 <%@page contentType="text/html" pageEncoding="UTF-8"%>
8 <IDOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.01 Transitional//EN"
9 “"http://www._w3.org/TR/html4/1oose .dtd">
10
11
12 <html>
13 <head>
14 <meta http-equiv="Content-Type" content="text/html;
15 charset=UTF-8">
16 <title>Savage Web Services Test</title>
17 </head>
18 <body>
19
20 <%
21 jJava.util _Properties configuration =
22 new java.util_Properties();
23 try {
24 configuration.load(new java.io.FilelnputStream
25 ("'C:/Users/Lenovo/Documents/MDTS/NPS/Thesis/" +
26 "src/SavageWSClientWebAppDevTest/bui ld/web/™ +
27 "loaddir.properties'™));
28 } catch (Exception ex) {
29
30 }
31 if (request.getParameter('webmethod').compareTo
32 ('findX3DModel")==0)
33 try {
34 x3dwsmethod . X3DWebServiceService service =
35 new x3dwsmethod.X3DWebServiceService();
36 x3dwsmethod . X3DWebService port =

142

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

service.getX3DWebServicePort();
jJava.lang.String searchTerm =
request.getParameter("'input');
jJava.lang.String result =
port.findX3DModel (searchTerm);
// Create Tile
jJava.io.FileWriter fstream =
new java.io.FileWriter(configuration.get
('bui ldWebFilePath™)+
"findX3DModelResult.xml'");
Java.io.BufferedWriter output =
new java.io.BufferedWriter(fstream);
output.write(result);
//Close the output stream
output.close();
out.printin
('<h1><A HREF=" +
"\"findX3DModellResult.xmI\" target=\""_blank\'"’>" +
"'Savage Web Service Invocation Result</h1>"");
} catch (Exception ex) {
System.out.printIn("EXCEPTION@TiIndX3DModel = "+ex);
}

else if (request.getParameter('webmethod™).
compareTo(''getX3DModel')==0)
try {
x3dwsmethod . X3DWebServiceService service =
new x3dwsmethod.X3DWebServiceService();
x3dwsmethod.X3DWebService port =
service.getX3DWebServicePort();
java.lang.String url =
request._getParameter(""input');
jJava.lang.String result = port.getX3DModel (url);
// Create Tile
Java.io.FileWriter fstream =
new java.io.FileWriter(configuration.get
('bui ldWebFilePath™)+
""getX3DModelResult.x3d");
Java.io.BufferedWriter output =
new java.io.BufferedWriter(fstream);
output.write(result);
//Close the output stream
output.close();
out.printin
('<h1><A HREF=\"getX3DModelResult.x3d\" target="" +
"\"_blank\">Savage Web Service Invocation Result™ +
"</h1>'"");
} catch (Exception ex) {
System.out.printIn(""EXCEPTION@getX3DModel : "+ex);
}

else 1Tt (request.getParameter('webmethod') .compareTo
(""findDESModel')==0)
try {
deswsmethod.DESWebServiceService service =
new deswsmethod.DESWebServiceService();
deswsmethod.DESWebService port =
service.getDESWebServicePort();

143

93 jJava.lang.String x3DUrl =

94 request.getParameter(""input');

95 jJava.lang.String result = port.findDESModel (x3DUrl);
96 // Create file

97 jJava.io.FileWriter fstream = new java.io.FileWriter
98 (configuration.get('buildWebFilePath™)+

99 "findDESModelResult_xml'");

100 jJjava.io.BufferedWriter output =

101 new java.io.BufferedWriter(fstream);

102 output.write(result);

103 //Close the output stream

104 output.close();

105 out.println

106 ("'<h1><A HREF=\"findDESModelResult.xml\" target="" +
107 "\" _blank\'"'>Savage Web Service Invocation Result" +
108 "</h1>");

109 } catch (Exception ex) {

110 System.out.printIn("EXCEPTION@TindDESModel : "+ex);
111

112 else if (request.getParameter('webmethod™).

113 compareTo("'getDESMode I')==0)

114 try {

115 deswsmethod.DESWebServiceService service =

116 new deswsmethod.DESWebServiceService();

117 deswsmethod.DESWebService port =

118 service.getDESWebServicePort();

119 jJava.lang.String desUrl =

120 request.getParameter("'input');

121 jJava.lang.String result =

122 port.getDESModel (desUrl);

123 // Create file

124 jJava.io.FileWriter fstream =

125 new java.io.FileWriter(configuration.get
126 (’bui ldWebFilePath'™)+

127 ""getDESModelResult._xml'™);

128 jJjava.io.BufferedWriter output =

129 new java.io.BufferedWriter(fstream);

130 output.write(result);

131 //Close the output stream

132 output.close();

133 out.println

134 ('<h1><A HREF=\"getDESModelResult.xml\" target="" +
135 "\"_blank\">Savage Web Service Invocation Result" +
136 "</h1>");

137 } catch (Exception ex) {

138 System.out.println

139 ("'EXCEPTION@getDESModel : '+ex);

140 }

141 %>

142 <h2><A HREF=

143 “http://1ocalhost:9090/SavageWSClientWebAppDevTest/ >
144 Return to Query Page</h2>

145 </body>
146 </html>

144

APPENDIX B. MEDIATION FOR SAVAGE WEB SERVICES

1. OWL-S FOR SAVAGE COMPOSITE PROCESS

The SAVAGE composite process for OWL-S is illustrated in Chapter VI, section
D. The services, service profiles, service groundings, atomic processes and composite
process are created in Protégé OWL-S editor. The OWL-S description in XML is
dynamically generated by Protégé. SavageOWLSSemanticWS.owl is the description for

SAVAGE composite process. Each atomic process has its associated OWL description.

a. SavageOWLSSematicWS.owl

1 <?xml version="1.0"?>

2 <rdf:RDF

3 xmIns:service=

4 "http://www.daml .org/services/owl-s/1.2/Service.owl#"

5 xmlns:process=

6 "http://www.daml .org/services/owl-s/1.2/Process.owl#"

7 xmIns=""http://www.owl-ontologies.com/Ontology1220745514 _owl#"
8 xmIns:swrilb="http://www._.w3.0rg/2003/11/swr 1b#"

9 xmins:list=

10 "http://www.daml .org/services/owl-s/1.2/generic/

11 ObjectList._owl#"

12 xmIns:rdf=""http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

13 xmIns:wil=""http://www._example.org/owls/X3DDESDecision.owl"
14 xmIns:expr="http://www.daml .org/services/owl-s/1.2/

15 generic/Expression.owl#"

16 xmIns:owl="http://www.w3.0rg/2002/07/owl#"

17 xmIns:xsd=""http://www._w3.0rg/2001/XMLSchema#""

18 xmIns:swri="http://www.w3.0rg/2003/11/swr 1#"

19 xmlns:grounding=

20 "http://www.daml .org/services/owl-s/1.2/Grounding.owl#"

21 xmIns:profile=

22 “http://www.daml .org/services/owl-s/1._2/Profile.owl#"

23 xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

24 xmlns:time="http://www. isi.edu/~pan/damltime/time-entry.owl#"

25 xml:base=""http://www.owl-ontologies.com/Ontologyl1220745514._.owl"">
26 <owl:Ontology rdf:about=""">

27 <owl : imports rdf:resource=

28 "http://www.example.org/owls/X3DDESDecision.owl"/>
29 <owl :imports rdf:resource=

30 “http://www.daml .org/services/owl-s/1.2/Service.owl"/>
31 <owl : imports rdf:resource=

32 "http://www._example.org/owls/findX3DModel .owl*' />
33 <owl : imports rdf:resource=

34 “http://www.w3.0rg/2003/11/swrl*/>

35 <owl : imports rdf:resource=

36 "http://www._example._org/owls/getDESModel .owl™'/>

37 <owl : imports rdf:resource=

38 "http://www.w3.0rg/2003/11/swrlb'/>

145

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

<owl : imports rdf:resource=
"http://www.daml .org/services/owl-s/1.2/Grounding.owl'/>
<owl - imports rdf:resource=
"http://www._daml .org/services/owl-s/1_2/Profile.owl"/>
<owl :imports rdf:resource=
"http://www.example.org/owls/findDESModel .owl"' />
<owl : imports rdf:resource=
"http://www_example._org/owls/getX3DModel .owl*' />
</owl :Ontology>
<process:Perform rdf:ID="findX3DModelProcess"'>
<process:process rdf:resource="http://www.example.org/owls/
TindX3DModel . owl#FindX3DModelProcess' />
<process:hasDataFrom>
<process: InputBinding rdf:ID="InputBinding_4'">
<process:valueSource>
<process:ValueOF rdf:I1D="ValueOf 5">
<process:fromProcess>
<process:Perform rdf:1D="X3DDESDecisionProcess">
<process:process rdf:resource
="http://www.example.org/owls/
X3DDESDecision.owl#X3DDESDecisionProcess' />
</process:Perform>
</process:fromProcess>
<process:theVar rdf:resource=
"http://www.example.org/owls/
X3DDESDecision.owl#X3DDESDecisionResult'/>
</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource=
"http://www.example.org/owls/
TfindX3DModel .owl#searchTerm"/>
</process: InputBinding>
</process:hasDataFrom>
</process:Perform>
<process:Perform rdf:ID="findDESModelProcess"'>
<process:process rdf:resource=
"http://www.example._org/owls/
FfindDESModel . owl#FindDESModelProcess' />
<process:hasDataFrom>
<process: InputBinding rdf:I1D="InputBinding_23">
<process:valueSource>
<process:ValueOf rdf:ID="ValueOf_24">
<process:fromProcess rdf:resource=
"#FindX3DModelProcess'' />
<process:theVar rdf:resource=
"http://www.example._org/owls/
FfindX3DModel .owl#return'/>
</process:ValueOf>
</process:valueSource>
<process:toParam rdf:resource=
"http://www._example._org/owls/
FfindDESModel . owl#x3dUr 1" />
</process: InputBinding>
</process:hasDataFrom>
</process:Perform>
<process: InputBinding rdf:ID="InputBinding_16">
<process:toParam rdf:resource=

146

96 "http://www.example.org/owls/getDESModel .owl#desUrl' />
97 <process:valueSource>

98 <process:ValueOf rdf:ID="ValueOf_17">

99 <process:fromProcess rdf:resource="#findDESModelProcess"'/>
100 <process:theVar rdf:resource=

101 "http://www.example.org/owls/findDESModel .owl#return'/>
102 </process:ValueOf>

103 </process:valueSource>

104 </process: InputBinding>
105 <process:Perform rdf:ID="PerformGetX3D">

106 <process:process rdf:resource=

107 “http://www.example._org/owls/

108 getX3DModel . owl#getX3DModelProcess' />

109 <process:hasDataFrom>

110 <process: InputBinding rdf:ID="InputBinding_10">
111 <process:valueSource>

112 <process:ValueOf rdf:ID="ValueOf_11">

113 <process:theVar rdf:resource=

114 "http://www.example.org/owls/

115 FindX3DModel .owl#return'/>

116 <process: fromProcess>

117 <process:Perform rdf:I1D="PerformFindX3D">
118 <process:process rdf:resource=

119 "http://www.example.org/owls/

120 FindX3DModel . owl#FindX3DModelProcess' />
121 </process:Perform>

122 </process:fromProcess>

123 </process:ValueOf>

124 </process:valueSource>

125 <process:toParam rdf:resource=

126 “http://www._example.org/owls/getX3DModel .owl#url* />
127 </process: InputBinding>

128 </process:hasDataFrom>

129 </process:Perform>
130 <process:ControlConstructList rdf:I1D="ControlConstructList 5">
131 <list:rest>

132 <process:ControlConstructList rdf:ID=

133 "ControlConstructList_16">

134 <list:first>

135 <process: If-Then-Else rdf:I1D="1f-Then-Else_15">
136 <process:ifCondition>

137 <expr:Condition rdf:ID=""test"/>

138 </process:ifCondition>

139 </process:1f-Then-Else>

140 </list:first>

141 <list:rest>

142 <process:ControlConstructList rdf:ID=

143 "ControlConstructList_8">

144 <list:rest rdf:resource=

145 "http://www.daml .org/services/owl-s/1.2/
146 generic/ObjectList._owl#nil"/>

147 <list:first rdf:resource="#PerformGetXx3D"/>
148 </process:ControlConstructList>

149 </list:rest>

150 </process:ControlConstructList>

151 </list:rest>

152 <list:first rdf:resource="#PerformFindXx3D"/>

147

153 </process:ControlConstructList>
154 <process:Sequence rdf:ID="Sequence 11'>

155 <process:components>

156 <process:ControlConstructList rdf:ID=

157 "ControlConstructList_13">

158 <list:Ffirst rdf:resource="#findDESModelProcess"/>
159 <list:rest>

160 <process:ControlConstructList rdf:ID=

161 "ControlConstructList_15">

162 <list:first>

163 <process:Perform rdf:I1D="getDESModelProcess">
164 <process:hasDataFrom rdf:resource=

165 "#1nputBinding_16"/>

166 <process:process rdf:resource=

167 "http://www.example.org/owls/

168 getDESModel . owl#getDESModelProcess' />
169 </process:Perform>

170 </list:first>

171 <list:rest rdf:resource=

172 "http://www.daml .org/services/owl-s/1.2/generic/
173 ObjectList.owl#nil'/>

174 </process:ControlConstructList>

175 </list:rest>

176 </process:ControlConstructList>

177 </process:components>

178 </process:Sequence>
179 <process:Sequence rdf:ID=""Sequence_18">

180 <process:components>

181 <process:ControlConstructList rdf:ID=

182 "ControlConstructList_20">

183 <list:rest rdf:resource=

184 "http://www.daml .org/services/owl-s/1.2/generic/
185 ObjectList.owl#nil"/>

186 <list:first>

187 <process:Perform rdf:ID="getX3DModelProcess">
188 <process:process rdf:resource=

189 "http://www.example._org/owls/

190 getX3DModel . owl#getX3DModelProcess' />
191 <process:hasDataFrom>

192 <process: InputBinding rdf:I1D="InputBinding_21'>
193 <process:valueSource>

194 <process:ValueOf rdf:ID="ValueOf_22">
195 <process:fromProcess rdf:resource="
196 #FindX3DModelProcess' />

197 <process:theVar rdf:resource=

198 "http://www.example.org/owls/

199 FfindX3DModel .owl#return'/>
200 </process:ValueOf>

201 </process:valueSource>

202 <process:toParam rdf:resource=

203 "http://www._example._org/owls/

204 getX3DModel _owl#url' />

205 </process: InputBinding>

206 </process:hasDataFrom>

207 </process:Perform>

208 </list:first>

209 </process:ControlConstructList>

148

210 </process:components>
211 </process:Sequence>
212 <process:ControlConstructList rdf:1D="ControlConstructList_3'>

213 <list:first rdf:resource="#X3DDESDecisionProcess"/>

214 <list:rest>

215 <process:ControlConstructList rdf:ID=

216 "ControlConstructList _4">

217 <list:rest>

218 <process:ControlConstructList rdf:ID=

219 "ControlConstructList_10">

220 <list:first>

221 <process:If-Then-Else rdf:I1D="1f-Then-Else_6">
222 <process:ifCondition>

223 <expr:Condition rdf:ID=""isFindMatchDES">
224 <profile:hasParameter rdf:resource=

225 "http://www.example.org/owls/

226 X3DDESDecision.owl#isGetMatchingDES™"/>
227 </expr:Condition>

228 </process:ifCondition>

229 <process:then rdf:resource="#Sequence_ 11'/>
230 <process:else rdf:resource="#Sequence_ 18"/>
231 </process: IT-Then-Else>

232 </list:first>

233 <list:rest rdf:resource=

234 "http://www.daml .org/services/owl-s/1.2/generic/
235 ObjectList.owl#nil'/>

236 </process:ControlConstructList>

237 </list:rest>

238 <list:first rdf:resource="#findX3DModelProcess"/>
239 </process:ControlConstructList>

240 </list:rest>

241 </process:ControlConstructList>
242 <rdf:Description rdf:about=

243 "http://www.example.org/owls/

244 getX3DModel . owl#getX3DModelProfile' >

245 <profile:serviceCategory>

246 <profile:ServiceCategory rdf:ID=

247 ""ServiceCategory getX3DModelProfile'>

248 <profile:code rdf:datatype=

249 "http://www.w3.0rg/2001/XMLSchema#byte"
250 >1</profile:code>

251 <profile:taxonomy rdf:datatype=

252 "http://www.w3.0rg/2001/XMLSchema#string"
253 >get</profile:taxonomy>

254 <profile:value rdf:datatype=

255 “http://www.w3.0rg/2001/XMLSchema#string’”
256 >X3D</profile:value>

257 <profile:categoryName rdf:datatype=

258 "http://www.w3.0rg/2001/XMLSchema#string"
259 >Savage Webservices</profile:categoryName>
260 </profile:ServiceCategory>

261 </profile:serviceCategory>

262 </rdf:Description>

263 <profile:ServiceCategory rdf:1D="ServiceCategory_25"/>

264 <profile:ServiceParameter rdf:ID="ServiceParameter_26"/>

265 <process:Sequence rdf:ID="Sequence_2'">

266 <process:components rdf:resource="#ControlConstructList_3"/>

149

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

O©CoO~NOOITAWNPE

</process:Sequence>
<process:CompositeProcess rdf:ID=""Savage X3D DES Composite'>
<rdfs:comment rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string™
>This composite process defines the workflow composition
between findX3DModel, getX3DModel, findDESModel and
getDESModel webmethods.</rdfs:comment>
<process:composedOf rdf:resource="#Sequence_ 2'/>
</process:CompositeProcess>
<process:Result rdf:ID="Result_27"/>
<process: InputBinding rdf:I1D="InputBinding_9"/>
<profile:ServiceCategory rdf:ID="ServiceCategory 1"/>
<expr:LogicLanguage rdf:ID=""LogicLanguage 9'/>
<rdf:Description rdf:about="http://www_example.org/owls/
getxX3DModel .owl#getX3DModelService'>
<rdfs:comment rdf:datatype=
“http://www._w3.0rg/2001/XMLSchema#string’”
></rdfs:comment>
</rdf:Description>
<process:Sequence rdf:ID="Sequence_ 3'>
<process:components rdf:resource="#ControlConstructList 5"/>
</process:Sequence>
</rdf:RDF>
<I-- Created with Protege (with OWL Plugin 3.2.1, Build 365)

http://protege.stanford.edu -->

b. X3DDESDecision.owl

<?xml version="1.0"7?>
<rdf:RDF

xmIns: rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#""
xmlns:j.0=
"http://www.daml .org/services/owl-s/1._2/Service.owl#"
xmIns:zowl=""http://www._w3.0rg/2002/07/owl#"
xmlns:j.1=
"http://www.daml .org/services/owl-s/1.2/Process.owl#"
xmlns:j.2=
"http://www._daml .org/services/owl-s/1.2/Grounding.owl#"
xmIns:daml="http://www.daml .org/2001/03/daml+oi I#"
xmlns:j.3=
"http://www.daml .org/services/owl-s/1.2/Profile.owl#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmIns:zp5="http://www.example.org/owls/X3DDESDecision.owl#"
xml :base="http://www.example.org/owls/X3DDESDecision.owl'>
<owl :Ontology rdf:about=""">
<owl : imports rdf:resource=
“http://www.daml .org/services/owl-s/1.2/Service.owl" />
<owl :imports rdf:resource=

"http://www.daml .org/services/owl-s/1.2/Grounding.owl' />

<owl : imports rdf:resource=
"http://www.daml.org/services/owl-s/1.2/Process.owl" />
<owl - imports rdf:resource=
"http://www._daml .org/services/owl-s/1_2/Profile_owl"/>
</owl :Ontology>
<j-1:Output rdf:ID=""X3DDESDecisionResult'>

150

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

<j.l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://www.w3.0rg/2001/XMLSchema#string</j .1:parameterType>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>X3DDESDecisionResult</rdfs: label>
</j.1:Output>
<j-0:Service rdf:ID="X3DDESDecisionService'>
<j -O:presents>
<j-3:Profile rdf:ID="X3DDESDecisionProfile'>
<jJ .0O:presentedBy rdf:resource="#X3DDESDecisionService'/>
<j -3:haslnput>
<j-1l:Input rdf:ID=""isGetMatchingDES">
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>isGetMatchingDES</rdfs: label>
<j-1l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://www.w3.0rg/2001/XMLSchema#boolean
</j.l:parameterType>
</j.1l:Input>
</j -3:haslnput>
<j -3:haslnput>
<j-1l:Input rdf:ID=""isGetX3D">
<j.1l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://www.w3.0rg/2001/XMLSchema#boolean
</j.l:parameterType>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>1sGetX3D</rdfs: label>
</j-1:Input>
</j -3:haslnput>
<j -3:haslnput>
<j.1:Input rdf:I1D="searchString'>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string’”
>searchString</rdfs:label>
<j.1l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://www.w3.0rg/2001/XMLSchema#string
</j.l:parameterType>
</j.1l:Input>
</j-3:haslnput>
<j.3:textDescription rdf:datatype=
“http://www.w3.0rg/2001/XMLSchema#string’”
>Auto generated from
http://localhost:8080/SavageX3DDESComposite.asmx?WSDL
</j -3:textDescription>
<j-3:serviceName rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string™
>X3DDESDecision</j .3:serviceName>
<j -3:hasOutput rdf:resource="#X3DDESDecisionResult'/>
</j.3:Profile>
</j.0:presents>
<j -0:supports>
<j -2:WsdIGrounding rdf:I1D=""X3DDESDecisionGrounding">

151

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

<j -2:hasAtomicProcessGrounding>
<j.2:WsdlAtomicProcessGrounding rdf:I1D=
"*X3DDESDecisionAtomicProcessGrounding'>
<j-2:owlsProcess>
<j-1l:AtomicProcess rdf:I1D=""X3DDESDecisionProcess'>
<j.1l:haslnput rdf:resource="#isGetMatchingDES"/>
<jJ-1:haslnput rdf:resource="#isGetX3D"/>
<j-1:-haslnput rdf:resource="#searchString'/>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>X3DDESDecisionProcess</rdfs: label>
<j-1:hasOutput rdf:resource=
"'#X3DDESDecisionResult'/>
<j -0O:describes rdf:resource=
""#X3DDESDecisionService'/>
</j.l:AtomicProcess>
</j.2:owlsProcess>
<j-2:wsdllnput>
<j -2:Wsdl InputMessageMap>
<j.2:owlsParameter rdf:resource="#searchString"/>
<j.2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:8080/SavageX3DDESComposite.asmx?
WSDL#searchString</j .2:wsdIMessagePart>
</j.2:WsdlInputMessageMap>
</j-2:wsdlInput>
<j-2:wsdlOperation>
<j -2:WsdlOperationRef>
<j-2:operation rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:8080/SavageX3DDESComposite.asmx?
WSDL#X3DDESDecision</j.2:operation>
<j-2:portType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://localhost:8080/SavageX3DDESComposite.asmx?
WSDL#ServicelSoap</j.2:portType>
</j -2:WsdlOperationRef>
</j-2:wsdlOperation>
<j-2:wsdllnput>
<j.2:Wsdl InputMessageMap>
<j-2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://localhost:8080/SavageX3DDESComposite.asmx?
WSDL#1sGetX3D</j .2:wsdIMessagePart>
<j.2:owlsParameter rdf:resource="#isGetX3D"/>
</j.2:WsdlInputMessageMap>
</j-2:wsdlInput>
<j.2:wsdlOutputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://X3DDESComposite.org/#X3DDESDecisionSoapOut
</j -2:wsdlOutputMessage>
<j-2:wsdlDocument rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:8080/SavageX3DDESComposite.asmx?WSDL
</j.2:wsdlDocument>
<j-2:wsdlInput>
<j -2:Wsdl InputMessageMap>

152

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

OCoO~NOUITAWNE

<j.2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:8080/SavageX3DDESComposite.asmx?
WSDL#isGetMatchingDES</j .2:wsdIMessagePart>
<j-2:owlsParameter rdf:resource=
"#isGetMatchingDES"/>
</j.2:WsdlInputMessageMap>
</j-2:wsdlInput>
<j -2:wsdlInputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"™
>http://X3DDESComposite.org/#X3DDESDecisionSoapln
</j.2:wsdllnputMessage>
<j -2:wsdlOutput>
<j -2:WsdlOutputMessageMap>
<j-2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:8080/SavageX3DDESComposite.asmx?
WSDL#X3DDESDecisionResult</j .2:wsdIMessagePart>
<j-2:owlsParameter rdf:resource=
"'#X3DDESDecisionResult'/>
</j.2:WsdlOutputMessageMap>
</j.2:wsdlOutput>
</j -2:WsdlAtomicProcessGrounding>
</j -2:hasAtomicProcessGrounding>
<j .0:supportedBy rdf:resource="#X3DDESDecisionService'/>
</j.2:WsdlGrounding>
</j -0:supports>
<j -0O:describedBy rdf:resource="#X3DDESDecisionProcess'/>

</j.0:Service>
</rdf:RDF>

<I-- Created with Protege (with OWL Plugin 3.2.1, Build 365)

http://protege.stanford.edu -->

C. findX3DModel.owl

<?xml version=""1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#""
xmIns:zp2="http://www.example.org/owls/findX3DModel .owl#"
xmlns:j.0=

"http://www.daml .org/services/owl-s/1.2/Service.owl#"
xmIns:owl="http://www.w3.0rg/2002/07/owl#""
xmIns:zj.1=

"http://www.daml .org/services/owl-s/1.2/Process.owl#"
xmlns:j.2=

"http://www.daml .org/services/owl-s/1.2/Grounding.owl#"
xmIns:daml="http://www.daml .org/2001/03/daml+oi 1#"
xmlns:j.3=

"http://www.daml .org/services/owl-s/1._2/Profile.owl#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

xmll :base="http://wm.example.org/owls/Findx3bModel .owl™>
<owl:Ontology rdf:about=""">

<owl - imports rdf:resource=
"http://www.daml .org/services/owl-s/1.2/Service.owl' />
<owl : imports rdf:resource=

153

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

"http://www.daml .org/services/owl-s/1.2/Profile.owl"/>
<owl : imports rdf:resource=
"http://www.daml .org/services/owl-s/1.2/Process.owl" />
<owl : imports rdf:resource=
"http://www.daml .org/services/owl-s/1.2/Grounding.owl" />
</owl :Ontology>
<j-2:WsdlAtomicProcessGrounding rdf:I1D=
"findX3DModelAtomicProcessGrounding'>
<j -2:wsdIDocument rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"™
>http://l1ocalhost:9090/SAVAGEWebServices/X3DWebService?
wsdl</j.2:wsdlDocument>
<j -2:owlsProcess>
<j-1l:AtomicProcess rdf:ID=
"findX3DModelProcess''>
<j.1:haslnput>
<j-1:Input rdf:I1D="searchTerm'">
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string’”
>searchTerm</rdfs: label>
<j.1l:parameterType rdf:datatype=
“http://www._w3.0rg/2001/XMLSchema#anyURI""
>http://www.w3.0rg/2001/XMLSchema#string
</j.l:parameterType>
</j.l1l:Input>
</j-1:haslnput>
<j -1:hasOutput>
<j-1:Output rdf:ID="return">
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>return</rdfs:label>
<j-l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://www.w3.0rg/2001/XMLSchema#string
</j.l:parameterType>
</j.1:Output>
</j.1:hasOutput>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>FindX3DModelProcess</rdfs: label>
<j -O:describes>
<j-0:Service rdf:ID="FfindX3DModelService'>
<jJ .O:presents>
<j.3:Profile rdf:ID="findX3DModelProfile'>
<J .0O:presentedBy rdf:resource=
"#FindX3DModelService' />
<j-3:serviceName rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>FindX3DModel</j .3:serviceName>
<j -3:textDescription rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string”
>Auto generated from
http://localhost:9090/SAVAGEWebServices/
X3DWebService?wsdl</j .3:textDescription>
<j-3:-haslnput rdf:resource="#searchTerm"/>
<j -3:hasOutput rdf:resource="#return'/>
</j-3:Profile>

154

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

</j.0:presents>
<J .0:supports>
<jJ-2:WsdIGrounding rdf:I1D="findX3DModelGrounding">
<j -O:supportedBy rdf:resource=
"#FindX3DModelService' />
<j -2:hasAtomicProcessGrounding rdf:resource=
"#FindX3DMode lAtomicProcessGrounding™/>
</j-2:WsdlGrounding>
</j.0:supports>
<j -0:describedBy rdf:resource=
"#FindX3DModelProcess'' />
</j.0:Service>
</j.0:describes>
</j -1:AtomicProcess>
</j-2:owlsProcess>
<j.2:wsdlInputMessage rdf:datatype=
“http://www._w3.0rg/2001/XMLSchema#anyURI""
>http://X3DWSMethod/#FindX3DModel</j .2:wsdl InputMessage>
<j -2:wsdlOperation>
<j.2:WsdlOperationRef>
<j.2:operation rdf:datatype=
“http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:9090/SAVAGEWebServices/X3DWebService?
wsdI#FindX3DModel</j .2:operation>
<j.2:portType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://1ocalhost:9090/SAVAGEWebServices/X3DWebService?
wsd1#X3DWebServicePort</j.2:portType>
</j -2:WsdlOperationRef>
</j.2:wsdlOperation>
<j-2:wsdlOutputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://X3DWSMethod/#FindX3DMode IResponse
</j.2:wsdlOutputMessage>
<j.2:wsdlInput>
<j -2:Wsdl InputMessageMap>
<j-2:owlsParameter rdf:resource="#searchTerm'/>
<j.2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://1ocalhost:9090/SAVAGEWebServices/X3DWebService?
wsdl#searchTerm</j .2:wsdIMessagePart>
</j -2:Wsdl InputMessageMap>
</j.2:wsdllnput>
<j-2:wsdlOutput>
<J -2:WsdlOutputMessageMap>
<j-2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://1ocalhost:9090/SAVAGEWebServices/X3DWebService?
wsdl#return</j .2:wsdlIMessagePart>
<j.2:owlsParameter rdf:resource="#return'/>
</} -2:WsdlOutputMessageMap>
</j.2:wsdlOutput>
</j.2:WsdlAtomicProcessGrounding>
</rdf:RDF>
<I-- Created with Protege (with OWL Plugin 3.2.1, Build 365)

http://protege.stanford.edu -->
155

d. getX3DModel.owl

1 <?xml version="1.0"7?>

2 <rdf:RDF

3 xmIns: rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#""

4 xmlns:j.0=

5 "http://www.daml .org/services/owl-s/1.2/Service.owl#"
6 xmIns:zpl=""http://www.example.org/owls/getX3DModel .owl#"

7 xmIns:owl=""http://www._w3.0rg/2002/07/owl#"

8 xmlns:j.1=

9 "http://www.daml .org/services/owl-s/1.2/Process.owl#"
10 xmlns:j.2=

11 "http://www._daml .org/services/owl-s/1.2/Grounding.owl#"
12 xmIns:daml="http://www.daml .org/2001/03/daml+oi I#"

13 xmlns:j.3=

14 "http://www.daml .org/services/owl-s/1.2/Profile.owl#"
15 xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

16 xml:base="http://www.example.org/owls/getX3DModel .owl"">

17 <owl :Ontology rdf:about=""">

18 <owl : imports rdf:resource=

19 "http://www.daml.org/services/owl-s/1.2/Service.owl'/>
20 <owl - imports rdf:resource=

21 “http://www._daml .org/services/owl-s/1_2/Profile._owl"/>
22 <owl : imports rdf:resource=

23 "http://www.daml .org/services/owl-s/1.2/Process.owl'/>
24 <owl : imports rdf:resource=

25 "http://www._.daml .org/services/owl-s/1.2/Grounding.owl"/>
26 </owl:Ontology>

27 <jJ.0:Service rdf:ID="getX3DModelService'>

28 <j -0:supports>

29 <j-2:WsdIGrounding rdf:1D=""getX3DModelGrounding"'>

30 <j -O:supportedBy rdf:resource="#getxX3DModelService'/>
31 <j -2:hasAtomicProcessGrounding>

32 <j.2:WsdlAtomicProcessGrounding rdf:I1D=

33 *getX3DModelAtomicProcessGrounding' >

34 <j-2:wsdlOutputMessage rdf:datatype=

35 "http://www.w3.0rg/2001/XMLSchema#anyURI™

36 >http://X3DWSMethod/#getX3DMode IResponse

37 </j.2:wsdlOutputMessage>

38 <j-2:wsdlInput>

39 <j -2:Wsdl InputMessageMap>

40 <j-2:wsdIMessagePart rdf:datatype=

41 "http://www.w3.0rg/2001/XMLSchema#anyURI"
42 >http://1ocalhost:9090/SAVAGEWebServices/

43 X3DWebService?wsdl#url</j .2:wsdIMessagePart>
44 <j-2:owlsParameter>

45 <j-1l:Input rdf:ID=""url"">

46 <j.1l:parameterType rdf:datatype=

47 "http://www.w3.0rg/2001/XMLSchema#anyURI""
48 >http://www.w3.0rg/2001/XMLSchema#string
49 </j.l:parameterType>

50 <rdfs:label rdf:datatype=

51 "http://www.w3.0rg/2001/XMLSchema#string"
52 >url</rdfs: label>

53 </j-1:Input>

54 </j-2:owlsParameter>

156

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

</j.2:WsdllnputMessageMap>
</j.2:wsdllnput>
<j-2:wsdlOutput>
<j -2:WsdlOutputMessageMap>
<j-2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:9090/SAVAGEWebServices/
X3DWebService?wsdl#return</j.2:wsdlMessagePart>
<j -2:owlsParameter>
<j.1:Output rdf:ID="return">
<rdfs:label rdf:datatype=
http://www.w3.0rg/2001/XMLSchema#string’”
>return</rdfs:label>
<j-1l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://www.w3.0rg/2001/XMLSchema#string
</j.l:parameterType>
</j-1:Output>
</j-2:owlsParameter>
</j.2:WsdlOutputMessageMap>
</j.2:wsdlOutput>
<j-2:wsdlDocument rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"™
>http://1ocalhost:9090/SAVAGEWebServices/X3DWebService
?wsdl</j.2:wsdlDocument>
<j.2:owlsProcess>
<j-1:AtomicProcess rdf:I1D=""getX3DModelProcess'>
<j-1:haslnput rdf:resource="#url"/>
<j -0:describes rdf:resource="#getX3DModelService'/>
<rdfs:label rdf:datatype=
“http://www.w3.0rg/2001/XMLSchema#string’”
>getX3DModelProcess</rdfs: label>
<j-1:hasOutput rdf:resource="#return'/>
</j-1:AtomicProcess>
</j.2:owlsProcess>
<j-2:wsdlOperation>
<j -2:WsdlOperationRef>
<j-2:portType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://localhost:9090/SAVAGEWebServices/
X3DWebService?wsd1#X3DWebServicePort
</j -2:portType>
<j.2:operation rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://localhost:9090/SAVAGEWebServices/
X3DWebService?wsdl#getX3DModel</j .2:operation>
</j -2:WsdlOperationRef>
</j.2:wsdlOperation>
<j-2:wsdlInputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://X3DWSMethod/#getX3DModel</j . 2:wsdl InputMessage>
</j -2:WsdlAtomicProcessGrounding>
</j .2:hasAtomicProcessGrounding>
</j.2:WsdlGrounding>
</j -O:supports>
<j -0O:describedBy rdf:resource="#getX3DModelProcess"/>
<jJ .O:presents>

157

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

O©CoO~NOUITAWNPR

<j.3:Profile rdf:ID="getX3DModelProfile'>
<J .O:presentedBy rdf:resource="#getX3DModelService'/>
<j -3:textDescription rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string™
>Auto generated from
http://localhost:9090/SAVAGEWebServices/
X3DWebService?wsdl</j .3:textDescription>
<j -3:-hasOutput rdf:resource="#return'/>
<j-3:-haslnput rdf:resource="#url"/>
<j.3:serviceName rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>getX3DModel</j .3:serviceName>
</j-3:Profile>
</j.0:presents>
</j.0:Service>
</rdf:RDF>

<I-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
http://protege.stanford.edu -->

e. findDESModel.owl

<?xml version="1.0"7?>
<rdf:RDF
xmIns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#""
xmlns:p3="http://www.example.org/owls/findDESModel .owl#"
xmlns:j.0=
"http://www.daml .org/services/owl-s/1.2/Service.owl#"
xmIns:owl=""http://www.w3.0rg/2002/07/owl#"
xmlns:zj.1=
"http://www.daml .org/services/owl-s/1.2/Process.owl#"
xmlns:j.2=
“http://www._.daml .org/services/owl-s/1.2/Grounding.owl#"
xmIns:daml="http://www.daml .org/2001/03/daml+oi I#"
xmlns:j.3=
"http://www.daml .org/services/owl-s/1.2/Profile.owl#"
xmIns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xml zbase=""http://www.example.org/owls/findDESModel .owl"">
<owl :Ontology rdf:about=""">
<owl :imports rdf:resource=
"http://www.daml.org/services/owl-s/1.2/Service.owl' />
<owl : imports rdf:resource=
“http://www.daml .org/services/owl-s/1.2/Profile._owl™/>
<owl :imports rdf:resource=
"http://www.daml .org/services/owl-s/1.2/Process.owl' />
<owl : imports rdf:resource=
"http://www.daml .org/services/owl-s/1.2/Grounding.owl'/>
</owl :Ontology>
<j-1:Output rdf:ID="return">
<j.1l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://www.w3.0rg/2001/XMLSchema#string
</j -1l:parameterType>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>return</rdfs:label>

158

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

</j.1:Output>
<j.2:WsdlAtomicProcessGrounding rdf:I1D=

"findDESMode lAtomicProcessGrounding'>
<j-2:wsdlOperation>
<j -2:WsdlOperationRef>
<j.2:operation rdf:datatype=
“http://www.w3.0rg/2001/XMLSchema#anyURI*"
>http://1ocalhost:9090/SAVAGEWebServices/DESWebService
?wsdI#FindDESModel</j .2:operation>
<j-2:portType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:9090/SAVAGEWebServices/DESWebService?
wsdI#DESWebServicePort</j.2:portType>
</j -2:WsdlOperationRef>
</j -2:wsdlOperation>
<j.2:wsdlInputMessage rdf:datatype=
“http://www._w3.0rg/2001/XMLSchema#anyURI""
>http://DESWSMethod/#findDESModel</j .2:wsdl InputMessage>
<j-2:wsdlInput>
<j .2:Wsdl InputMessageMap>
<j.2:owlsParameter>
<j-1:Input rdf:1D="x3dUrl">
<j.1l:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://www.w3.0rg/2001/XMLSchema#string
</j.1l:parameterType>
<rdfs:label rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>x3dUr</rdfs: label>
</j.1l:Input>
</j.2:owlsParameter>
<j-2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://1ocalhost:9090/SAVAGEWebServices/DESWebService
?wsdl#x3dUrl</j . 2:wsdIMessagePart>
</j.2:WsdlInputMessageMap>
</j-2:wsdlInput>
<j-2:wsdlOutputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://DESWSMethod/#FindDESMode lResponse
</j.2:wsdlOutputMessage>
<j -2:wsdlOutput>
<j -.2:WsdlOutputMessageMap>
<j.2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:9090/SAVAGEWebServices/DESWebService
?wsdl#return</j.2:wsdIMessagePart>
<j.2:owlsParameter rdf:resource="#return'/>
</j -2:WsdlOutputMessageMap>
</j -2:wsdlOutput>
<j -2:wsdIDocument rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"™
>http://1ocalhost:9090/SAVAGEWebServices/DESWebService?
wsdl</j.2:wsdlDocument>
<j-2:owlsProcess>
<j-1l:AtomicProcess rdf:I1D="findDESModelProcess">
<rdfs:label rdf:datatype=

159

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

O©CoO~NOOOITAWNPE

"http://www.w3.0rg/2001/XMLSchema#string"
>FindDESModelProcess</rdfs: label>
<j-O:describes>
<j.0:Service rdf:ID="findDESModelService'>
<j -O:supports>
<j-2:WsdIGrounding rdf:I1D="findDESModelGrounding"'>
<j -2:hasAtomicProcessGrounding rdf:resource=
"#FindDESMode lAtomicProcessGrounding™/>
<j -O:supportedBy rdf:resource=
"#findDESModelService'/>
</j.2:WsdlGrounding>
</j -0O:supports>
<j .-O:presents>
<j-3:Profile rdf:ID="findDESModelProfile'>
<j.3:textDescription rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string"
>Auto generated from
http://l1ocalhost:9090/SAVAGEWebServices/
DESWebService?wsdl</j .3:textDescription>
<j-3:haslnput rdf:resource="#x3dUrl"/>
<J -3:hasOutput rdf:resource="#return"/>
<j-3:serviceName rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string’
>FindDESModel</j .3:serviceName>
<j.O:presentedBy rdf:resource=
"#findDESModelService' />
</j-3:Profile>
</j.0:presents>
<j -0O:describedBy rdf:resource=
"#findDESModelProcess'' />
</j.0:Service>
</j.0:describes>
<j.1l:haslnput rdf:resource="#x3dUrl"/>
<j-.1:hasOutput rdf:resource="#return'/>
</j.l:AtomicProcess>
</j.2:owlsProcess>
</j -2:WsdlAtomicProcessGrounding>
</rdf:RDF>

<I-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
http://protege.stanford.edu -->

f. getDESModel.owl

<?xml version="1.0"?>
<rdf:RDF
xmIns: rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#""
xmlns:j.0=
"http://www.daml .org/services/owl-s/1._.2/Service.owl#"
xmIns:zowl=""http://www._w3.0rg/2002/07/owl#"
xmlns:j.1=
"http://www.daml .org/services/owl-s/1.2/Process.owl#"
xmlns:p4="http://www.example.org/owls/getDESModel .owl#""
xmlns:zj.2=
"http://www.daml.org/services/owl-s/1.2/Grounding.owl#"
xmIns:daml="http://www.daml .org/2001/03/daml+oi I#"

160

13 xmlns:j.3=

14 "http://www.daml .org/services/owl-s/1.2/Profile.owl#"
15 xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

16 xml:base="http://www.example.org/owls/getDESModel .owl"'">

17 <owl :Ontology rdf:about=""">

18 <owl : imports rdf:resource=

19 “http://www.daml .org/services/owl-s/1.2/Service.owl"/>
20 <owl : imports rdf:resource=

21 “http://www._daml .org/services/owl-s/1_2/Profile._owl"/>
22 <owl : imports rdf:resource=

23 "http://www.daml .org/services/owl-s/1.2/Process.owl' />
24 <owl - imports rdf:resource=

25 "http://www.daml .org/services/owl-s/1.2/Grounding.owl'/>

26 </owl :Ontology>
27 <j.0:Service rdf:I1D="getDESModelService'>

28 <j .O:presents>

29 <j-3:Profile rdf:I1D="getDESModelProfile'>

30 <j -3:haslnput>

31 <j-1l:Input rdf:I1D="desUrl">

32 <j.1l:parameterType rdf:datatype=

33 "http://www.w3.0rg/2001/XMLSchema#anyURI""
34 >http://www.w3.0rg/2001/XMLSchema#string

35 </j.l:parameterType>

36 <rdfs:label rdf:datatype=

37 "http://www.w3.0rg/2001/XMLSchema#string"
38 >desUrl</rdfs:label>

39 </j-1:Input>

40 </j -3:haslnput>

41 <j -3:hasOutput>

42 <j.1:Output rdf:ID="return">

43 <rdfs:label rdf:datatype=

44 "http://www.w3.0rg/2001/XMLSchema#string™
45 >return</rdfs:label>

46 <j.1l:parameterType rdf:datatype=

47 "http://www.w3.0rg/2001/XMLSchema#anyURI""
48 >http://www.w3.0rg/2001/XMLSchema#string

49 </j.l:parameterType>

50 </j.1:Output>

51 </j -3:hasOutput>

52 <jJ .0O:presentedBy rdf:resource="#getDESModelService'/>
53 <j-3:serviceName rdf:datatype=

54 "http://www.w3.0rg/2001/XMLSchema#string"”

55 >getDESModel</j .3:serviceName>

56 <j.3:textDescription rdf:datatype=

57 "http://www.w3.0rg/2001/XMLSchema#string"

58 >Auto generated from

59 http://l1ocalhost:9090/SAVAGEWebServices/

60 DESWebService?wsdl</j .3:textDescription>
61 </j.3:Profile>

62 </j -0O:presents>

63 <j -O:supports>

64 <j-2:WsdIGrounding rdf:1D=""getDESModelGrounding"'>
65 <J -.2:hasAtomicProcessGrounding>

66 <j-2:WsdlAtomicProcessGrounding rdf:I1D=

67 "*getDESModelAtomicProcessGrounding' >

68 <j -2:wsdlOutput>

69 <J -2:WsdlOutputMessageMap>

161

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

<j.2:wsdIMessagePart rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:-9090/SAVAGEWebServices/
DESWebService?wsdl#return</j.2:
wsdIMessagePart>
<j.2:owlsParameter rdf:resource="#return'/>
</j.2:WsdlOutputMessageMap>
</j -2:wsdlOutput>
<j -2:wsdIDocument rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://1ocalhost:9090/SAVAGEWebServices/DESWebService
?wsdl</j._.2:wsdlDocument>
<j-2:wsdlInput>
<j -2:Wsdl InputMessageMap>
<j.2:owlsParameter rdf:resource="#desUrl"/>
<j.2:wsdIMessagePart rdf:datatype=
“http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:9090/SAVAGEWebServices/
DESWebService?wsdl#desUril</j .2:
wsdIMessagePart>
</j.2:WsdlInputMessageMap>
</j.2:wsdllnput>
<j-2:wsdlOutputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI™
>http://DESWSMethod/#getDESMode IResponse
</j -2:wsdlOutputMessage>
<j-2:owlsProcess>
<j-1l:AtomicProcess rdf:I1D="getDESModelProcess'>
<j-1:haslnput rdf:resource="#desUrl"/>
<rdfs:label rdf:datatype=
“http://www.w3.0rg/2001/XMLSchema#string’”
>getDESModelProcess</rdfs: label>
<j-1:hasOutput rdf:resource="#return'/>
<j.0O:describes rdf:resource=
""#getDESModelService'/>
</j.l1l:AtomicProcess>
</j-2:owlsProcess>
<j-.2:wsdlInputMessage rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://DESWSMethod/#getDESModel
</j.2:wsdlInputMessage>
<j -2:wsdlOperation>
<j.2:WsdlOperationRef>
<j.2:operation rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI""
>http://1ocalhost:9090/SAVAGEWebServices/
DESWebService?wsdl#getDESModel</j .2:operation>
<j.2:portType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI"
>http://1ocalhost:9090/SAVAGEWebServices/
DESWebService?wsdI#DESWebServicePort
</j -2:portType>
</j.2:WsdlOperationRef>
</j.2:wsdlOperation>
</j.2:WsdlAtomicProcessGrounding>
</j -2:hasAtomicProcessGrounding>
<j -O:supportedBy rdf:resource="#getDESModelService'/>

162

127 </j.2:WsdlGrounding>

128 </j .0:supports>

129 <j -0O:describedBy rdf:resource="#getDESModelProcess'/>
130 </j-0:Service>

131 </rdf:RDF>

132
133 <!-- Created with Protege (with OWL Plugin 3.2.1, Build 365)
134 http://protege.stanford.edu -->

2. WSBPEL FOR SAVAGE COMPOSITE PROCESS

The WSBPEL composite process for SAVAGE web services is constructed using
NetBeans. NetBeans dynamically generates WSBPEL description in XML.
compositeProcess.bpel describes the composite process. The remaning WSDL files are
components required for the composite process. WSDL files for X3D and DES web

services, which are listed in Appendix A, are also used in WSBPEL composite process.

a. compositeProcess.bpel

1 <?xml version="1.0" encoding="UTF-8"7?>
2 <process

3 name=""compositeProcess"
4 targetNamespace=
5 "http://enterprise.netbeans.org/bpel/
6 BpelModulel/compositeProcess"
7 xmlns=
8 "http://docs.oasis-open.org/wsbpel/2_0/process/executable™
9 xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
10 xmlns:tns=
11 "http://enterprise.netbeans.org/bpel/BpelModulel/
12 compositeProcess"
13 xmIns:sxt="http://www.sun.com/wsbpel/2_.0/process/
14 executable/SUNExtension/Trace"
15 xmlIns:sxed="http://www.sun.com/wsbpel/2.0/process/
16 executable/SUNExtension/Editor™
17 xmlIns:nsO=""http://docs.oasis-open.org/wsbpel/2.0/
18 process/executable’>
19 <import namespace=
20
"http://enterprise.netbeans.org/bpel/X3DWebServiceServiceWrapper"
21 location=""X3DWebServiceServiceWrapper.wsdl"
22 importType="http://schemas.xmlsoap.org/wsdl/*/>
23 <import namespace="http://X3DWSMethod/"
24 location=""X3DWebServiceService.wsdl"
25 importType="http://schemas.xmlsoap.org/wsdl/"/>
26 <import namespace=
27 "http://j2ee._netbeans.org/wsdl/SavageBpel X3DDESSeqComposite™
28 location=""SavageBpe I X3DDESSeqComposite.wsdl"
29 importType="http://schemas.xmlsoap.org/wsdl/"/>
30 <import namespace=

163

31
32
33
34
35

"http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision™
location=""SavageGetX3DDESDecision.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/*/>

<import namespace=

"http://enterprise.netbeans.org/bpel/X3DWebServiceServiceWrapper"

36
37
38
39

location=""X3DWebServiceServiceWrapper .wsdl"
importType="http://schemas.xmlsoap.org/wsdl/*"/>
<import namespace=

"http://enterprise.netbeans.org/bpel/DESWebServiceServiceWrapper"

40
41
42
43
a4
45
46
47
48

location=""DESWebServiceServiceWrapper .wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://DESWSMethod/"
location="DESWebServiceService.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<partnerLinks>

<partnerLink name="'SavageBpel X3DDESSeqLink"

xmlns:tns=

"http://j2ee.netbheans.org/wsdl/SavageBpe I X3DDESSeqComposite"

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

partnerLinkType=""tns:SavageBpel X3DDESSeqComposite"
myRole=""SavageBpe I X3DDESSeqCompositePortTypeRole"/>
<partnerLink name=""X3DWebServiceLinkForComposite"
xmlns:tns=
"http://enterprise.netbeans.org/bpel/X3DWebServiceServiceWrapper"
partnerLinkType=""tns:X3DWebServiceLinkForComposite"
myRole=""X3DWebServiceRole"
partnerRole="X3DWebPartnerServiceRole"/>
<partnerLink name="DESWSLinkComposite"
xmlns:tns=
"http://enterprise.netbeans.org/bpel/DESWebServiceServiceWrapper"
partnerLinkType=""tns:DESWSLinkComposite"
myRole=""DESWebServiceRole"
partnerRole=""DESWebPartnerServiceRole"/>
<partnerLink name="SavageDESX3DDecision"
xmlns:tns=
"http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"
partnerLinkType=""tns:SavageGetX3DDESDecision"
myRole=""SavageGetX3DDESDecisionPortTypeRole"/>
</partnerLinks>
<variables>
<variable
name=""GetDES I nvokeOut"
xmlIns:tns="http://DESWSMethod/""
messageType=""tns:getDESModelResponse" />
<variable
name="GetDESInvokeln"
xmIns:tns="http://DESWSMethod/""
messageType=""tns:getDESModel"' />
<variable
name="GetX3DInvokeOut"
xmlIns:tns="http://X3DWSMethod/"
messageType=""tns:getX3DMode lResponse' />
<variable
name=""GetX3DInvokeln"
xmIns:tns="http://X3DWSMethod/"

164

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

messageType=""tns:getX3DModel" />
<variable

name=""FindDES I nvokeOut"

xmIns:tns="http://DESWSMethod/"

messageType=""tns: fFindDESMode lResponse'' />
<variable

name=""FindDESInvokeln"

xmIns:tns="http://DESWSMethod/"

messageType=""tns:findDESModel''/>
<variable

name=""FindX3DInvokeOut"

xmIns:tns="http://X3DWSMethod/""

messageType=""tns:findX3DModelIResponse' />
<variable name="FindX3DInvokeln"

xmins:tns="http://X3DWSMethod/"

messageType=""tns: findX3DModel' />

<variable name="'SavageBpel X3DDESSeqCompositeOperationOut™

xmIns:tns=

"http://j2ee.netbeans.org/wsdl/SavageBpel X3DDESSeqComposite™

messageType=

""tns:SavageBpel X3DDESSeqCompositeOperationResponse' />

<variable name="'SavageBpel X3DDESSeqCompositeOperationin®
xmlns:tns=

"http://j2ee.netbeans.org/wsdl/SavageBpel X3DDESSeqComposite'

messageType=
""tns:SavageBpel X3DDESSeqCompositeOperationRequest'' />

</variables>
<sequence>

<receive name="'startComposite' createlnstance="yes"
partnerLink=""SavageBpel X3DDESSeqL ink"
operation="SavageBpe I X3DDESSeqCompositeOperation™
xmlns:tns=

"http://j2ee.netbeans.org/wsdl/SavageBpe l X3DDESSeqComposite"

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

portType=""1tns:SavageBpe I X3DDESSeqCompositePortType"
variable=""SavageBpe I X3DDESSeqCompositeOperationin’/>
<assign name="Assignl'>
<Copy>
<from variable=
""'SavageBpe I X3DDESSeqCompositeOperationin®
part="'searchString"/>
<to>$FindX3DInvokeln.parameters/searchTerm</to>
</copy>
</assign>
<invoke name="InvokeX3DFind"
partnerLink=""X3DWebServicelLinkForComposite"
operation="findX3DModel"
xmlIns:tns="http://X3DWSMethod/"
portType=""tns:X3DWebService"
inputVariable="FindX3DInvokeln"
outputVariable="FindX3DInvokeOut"/>
<assign name="Assign2'>
<Copy>
<from>nsO:doXslTransform
(“urn:stylesheets:transformx3DUrlList",
$FindX3DInvokeOut.parameters/return)</from>
<to>$GetX3DInvokeln.parameters/url</to>

165

141 </copy>

142 <copy>

143 <from>nsO:doXslTransform(“urn:stylesheets:
144 transformX3DUrlList",$FindX3DInvokeOut.
145 parameters/return)</from>

146 <to variable="FindDESInvokeln" part="parameters'/>
147 </copy>

148 </assign>

149 <if name="1f">

150 <condition>

151 $SavageBpe I X3DDESSeqCompositeOperationln.
152 isGetX3DModel</condition>

153 <invoke name="InvokeX3DGet"

154 partnerLink="X3DWebServiceLinkForComposite"
155 operation=""getX3DModel"

156 xmlIns:tns="http://X3DWSMethod/"

157 portType=""tns:X3DWebService"

158 inputVariable="GetX3DInvokeln"

159 outputVariable="GetX3DInvokeOut"/>

160 <elseif>

161 <condition>

162 $SavageBpe IX3DDESSeqCompositeOperationlin.
163 isFindGetDESModel</condition>

164 <sequence name="''Sequencel’'>

165 <invoke name="InvokeFindDES"

166 partnerLink="DESWSLinkComposite"

167 operation="findDESModel"’

168 xmIns:tns="http://DESWSMethod/""

169 portType=""tns:DESWebService"

170 inputVariable="FindDESInvokeln"

171 outputVariable="FindDESInvokeQut"/>
172 <assign name="Assign3'>

173 <copy>

174 <from>$FindDESInvokeOut.

175 parameters/return</from>

176 <to>$GetDESInvokeln.

177 parameters/desUri</to>

178 </copy>

179 </assign>

180 <invoke name="InvokeGetDES"

181 partnerLink="DESWSLinkComposite"

182 operation="getDESModel"

183 xmIns:tns="http://DESWSMethod/"

184 portType=""tns:DESWebService"

185 inputVariable="GetDESInvokeln"

186 outputVariable="GetDESInvokeOut"/>
187 </sequence>

188 </elseif>

189 <else>

190 <empty name="‘doNothing"/>

191 </else>

192 </if>

193 <reply name="‘endComposite"

194 partnerLink="SavageBpel X3DDESSeqL ink"

195 operation="SavageBpe I X3DDESSeqCompositeOperation™
196 xmlns:tns=

197 "http://j2ee.netbeans.org/wsdl/SavageBpe l X3DDESSeqComposite"

166

198
199
200

portType=""tns:SavageBpe I X3DDESSeqCompositePortType"
variable=""SavageBpe I X3DDESSeqCompositeOperationOut"/>
</sequence>

201 </process>

O©CoO~NOOITAWNE

25
26

O©CoO~NOOITAWNPE

b. DESWebServiceServiceWrapper.wsdl

<?xml version="1.0" encoding=""UTF-8"?>

<definitions

xmIns="http://schemas.xmlsoap.org/wsdl/"
xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/*
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
name=""DESWebServiceServiceWrapper"
targetNamespace=
"http://enterprise.netbeans.org/bpel/
DESWebServiceServiceWrapper"
xmIns:tns=
"http://enterprise.netbeans.org/bpel/
DESWebServiceServiceWrapper"
xmIns:plnk="http://docs.oasis-open.org/wsbpel/2._0/plnktype
xmIns:ns="http://DESWSMethod/ ">
<import location="DESWebServiceService.wsdl"
namespace=""http://DESWSMethod/"" />
<plInk:partnerLinkType
name=""DESWSLinkComposite'>
<pInk:role name="DESWebServiceRole"
portType="ns:DESWebService"/>
<plInk:role name="DESWebPartnerServiceRole"
portType="ns:DESWebService"/>
</plInk:partnerLinkType>

</definitions>

C. SavageBpelX3DDESSeqComposite.wsdl

<?xml version="1.0" encoding=""UTF-8"?>
<definitions name="'SavageBpel X3DDESSeqComposite"

targetNamespace=
"http://j2ee.netbeans.org/wsdl/SavageBpe I X3DDESSeqComposite"
xmIns="http://schemas.xmlsoap.org/wsdl/"
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/*
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmiIns:tns="http://j2ee._netbeans.org/wsdl/
SavageBpe I X3DDESSeqComposite"’
xmIns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype™
xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"'">
<types/>
<message name="'SavageBpel X3DDESSeqCompositeOperationRequest'>
<part name=''searchString" type="xsd:string'/>
<part name="isGetX3DModel" type="xsd:boolean'/>
<part name=""isFindGetDESModel" type="'xsd:boolean"/>
</message>
<message name="'SavageBpel X3DDESSeqCompositeOperationResponse''>
<part name="resultString" type="Xxsd:string'/>
</message>

167

21
22
23
24
25
26
27
28

<portType name="'SavageBpelX3DDESSeqCompositePortType'>
<operation name='SavageBpel X3DDESSeqCompositeOperation'>
<input name="inputl"
message=
""tns:SavageBpel X3DDESSeqCompositeOperationRequest' />
<output name="outputl"
message=

""tns:SavageBpel X3DDESSeqCompositeOperationResponse' />

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

</operation>
</portType>
<binding name="'SavageBpel X3DDESSeqCompositeBinding"
type=""tns:SavageBpel X3DDESSeqCompositePortType'>
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http'/>
<operation name='"SavageBpel X3DDESSeqCompositeOperation>
<soap:operation/>
<input name="inputl'>
<soap:body use="literal"
namespace=
"http://j2ee.netbeans.org/wsdl/
SavageBpe I X3DDESSeqComposite' />
</input>
<output name="outputl'>
<soap:body use="literal"
namespace="http://j2ee.netbeans.org/wsdl/
SavageBpel X3DDESSeqComposite' />
</output>
</operation>
</binding>
<service name=""SavageBpel X3DDESSeqgCompositeService'>
<port name="SavageBpel X3DDESSeqCompositePort"
binding=""tns:SavageBpel X3DDESSeqCompositeBinding'>
<soap:address location=
“http://localhost:${HttpDefaul tPort}/
SavageBpe I X3DDESSeqCompositeService/
SavageBpe IX3DDESSeqCompositePort' />
</port>
</service>
<plInk:partnerLinkType name="'SavageBpelX3DDESSegComposite">

<pInk:role
name="'SavageBpe I X3DDESSeqCompositePortTypeRole"
portType=""1tns:SavageBpe I X3DDESSeqCompositePortType"/>
</plInk:partnerLinkType>

74 </definitions>

168

d. SavageBpelX3DSeq.wsdl

1 <?xml version="1.0" encoding="UTF-8"7?>
2 <definitions name="'SavageBpelX3DSeq'" targetNamespace

="http://j2ee.netbeans.org/wsdl/SavageBpel X3DSeq"
xmIns="http://schemas.xmlsoap.org/wsdl/"
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/*
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmlIns:tns="http://j2ee.netbeans.org/wsdl/SavageBpel X3DSeq""
xmIns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/'*>
<types/>
<message name="'SavageBpelX3DSeqOperationRequest''>
<part name="partl" type=''xsd:string"/>
</message>
<message name="'SavageBpelX3DSeqOperationResponse’>
<part name="partl" type='xsd:string'/>
</message>
<portType name="'SavageBpelX3DSeqgPortType''>
<operation name="SavageBpelX3DSeqOperation'>
<input name="inputl”
message=""tns:SavageBpelX3DSeqOperationRequest'' />
<output name="outputl"
message=""tns:SavageBpe I X3DSeqgOperationResponse" />
</operation>
</portType>
<binding name="SavageBpelX3DSeqgBinding"
type=""tns:SavageBpelX3DSeqPortType'>
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="SavageBpelX3DSeqOperation’>
<soap:operation/>
<input name="inputl'>
<soap:body use="literal”
namespace=
"http://j2ee_netbeans.org/wsdl/SavageBpel X3DSeq"' />
</input>
<output name="‘outputl'>
<soap:body use="literal”
namespace
="http://j2ee_netbeans.org/wsdl/SavageBpel X3DSeq"' />
</output>
</operation>
</binding>
<service name="'SavageBpelX3DSeqService">
<port name="SavageBpelX3DSeqgPort"
binding=""tns:SavageBpelX3DSeqgBinding">
<soap:address location=
"http://1ocalhost:${HttpDefaultPort}
/SavageBpel X3DSeqService/SavageBpelX3DSeqgPort"/>
</port>
</service>
<pInk:partnerLinkType name="SavageBpelX3DSeq'>

169

55
56
57
58
59
60
61
62
63
64

O©CoO~NOOOITAWNPE

<pInk:role name="SavageBpelX3DSeqPortTypeRole
portType="tns:SavageBpelX3DSeqgPortType'/>
</plInk:partnerLinkType>

</definitions>

e. SavageGetX3DDESDecision.wsdl

<?xml version="1.0" encoding=""UTF-8"?>

<definitions name="SavageGetX3DDESDecision"
targetNamespace=
"http://j2ee._netbeans.org/wsdl/SavageGetX3DDESDecision"

xmIns="http://schemas.xmlsoap.org/wsdl/"
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:tns=
“http://j2ee._netbeans.org/wsdl/SavageGetX3DDESDecision™
xmIns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype’
xmlIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"'">
<types/>
<message name="'SavageGetX3DDESDecisionOperationRequest''>
<part name="isMatchDES" type="xsd:boolean"/>
</message>
<message name="'SavageGetX3DDESDecisionOperationResponse'/>
<portType name="'SavageGetX3DDESDecisionPortType'>
<operation name='SavageGetX3DDESDecisionOperation'>
<input name="inputl”
message=
""tns:SavageGetX3DDESDecisionOperationRequest'/>
<output name="outputl"
message=
"tns:SavageGetX3DDESDecisionOperationResponse />
</operation>
</portType>
<binding name="'SavageGetX3DDESDecisionBinding"
type=""tns:SavageGetX3DDESDecisionPortType'>
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http'/>
<operation name='SavageGetX3DDESDecisionOperation'>
<soap:operation/>
<input name="inputl'>
<soap:body use="literal"
namespace=

"http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"/>

</input>

<output name="outputl'>
<soap:body use="literal"
namespace=

"http://j2ee.netbeans.org/wsdl/SavageGetX3DDESDecision"/>

</output>
</operation>

170

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

O©CoO~NOUITAWNPE

28
29

</binding>
<service name="'SavageGetX3DDESDecisionService'>
<port name="SavageGetX3DDESDecisionPort"
binding=""tns:SavageGetX3DDESDecisionBinding'>
<soap:address
location="http://localhost:${HttpDefaul tPort}
/SavageGetX3DDESDecisionService/
SavageGetX3DDESDecisionPort"/>
</port>
</service>
<plInk:partnerLinkType name="'SavageGetX3DDESDecision">

<plInk:role name="SavageGetX3DDESDecisionPortTypeRole"
portType="tns:SavageGetX3DDESDecisionPortType"'/>
</plInk:partnerLinkType>

</definitions>

f. X3DWebServiceServiceWrapper.wsdl

<?xml version="1.0" encoding=""UTF-8"?>

<definitions

xmlIns="http://schemas.xmlsoap.org/wsdl/"
xmlIns:soap="http://schemas.xmlsoap.org/wsdl/soap/""
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmIns:xsd=""http://www._w3.0rg/2001/XMLSchema""
name=""X3DWebServiceServiceWrapper"
targetNamespace=
"http://enterprise.netbeans.org/bpel/
X3DWebServiceServiceWrapper™
xmIns:tns="http://enterprise.netbeans.org/bpel/
X3DWebServiceServiceWrapper"
xmIns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmIns:ns=""http://X3DWSMethod/ ">
<import location="X3DWebServiceService.wsdl"
namespace="http://X3DWSMethod/*" />
<pInk:partnerLinkType name="'X3DWebServiceLinkType'>
<pInk:role name="X3DWebServiceRole"
portType="ns:X3DWebService"/>
<pInk:role name="X3DWebPartnerServiceRole"
portType="ns:X3DWebService'/>
</plInk:partnerLinkType>
<plInk:partnerLinkType name=""X3DWebServicelLinkForComposite'>
<pInk:role name="X3DWebServiceRole"
portType=""ns:X3DWebService"/>
<pInk:role name="X3DWebPartnerServiceRole"
portType="ns:X3DWebService"/>
</plInk:partnerLinkType>

30 </definitions>

171

g. transformX3DUrlList.xsl

1 <?xml version="1.0" encoding="UTF-8"7?>

2 <xsl:stylesheet version="1.0"

3 xmlIns:xsl="http://www.w3.0rg/1999/XsL/Transform'>
4 <xsl:output method="text"/>

5 <xsl:template match="/x3-dFind-result-entity'>
6 <xsl:for-each select="./result-set'>

7 <xsl:if test="_.=._/result-set[1]">

8 <xsl:value-of select="./value"/>

9 <xsl:text></xsl :text>

10 </xsl:if>

11 </xsl :for-each>

12 </xsl:template>

13 </xsl:stylesheet>

172

APPENDIX C. RETRIEVE EXAMPLES

1. SAVAGE WEB SERVICES SOURCE CODE

Online at

https://savage.nps.edu/svn/nps/Savage/services/\WebServices/SAVAGEWebServices

Subversion master source at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEWebServices/src

War file at (~11.2 MB)
https://savage.nps.edu/svn/nps/Savage/services/\WebServices/SAVAGEWebServices/dist/
SAVAGEWebServices.war

2. SAVAGE WEB SERVICES UML DIAGRAMS

Online at

https://savage.nps.edu/svn/nps/Savage/services/\WWebServices/SAVAGEModel/report/inde

x.html

Subversion master source at

https://savage.nps.edu/svn/nps/Savage/services/\WebServices/SAVAGEModel/

3. JSP CLIENT DEMO URL

Online at

https://savage.nps.edu/SavageWSClientWebAppProdTest/

Subversion master source at

https://savage.nps.edu/svn/nps/Savage/services/WebServices/SAVAGEWebServicesClie
nt/

173

THIS PAGE INTENTIONALLY LEFT BLANK

174

APPENDIX D. PRESENTATION SLIDESET

Leong, Hoe Wai
DSO National Laboratories

Problem Statement

* Web Service Architecture (WSA) is an
example implementation of SOA

* Can WSA software framework be so usable

and intelligent that web services integration
can be done on the fly?

— Coding is not required by programmer to
integrate web services into WSA

175

Motivation

In a net ecentric environment,
Data, tools and people operate
in a distributed Network

Jawnsuo)

/)\

[Ar;hlte

b ooveveass
1 ! - [Usable :@m

1A00 g

Key enabler for
systems of systems

architecturein a —n_ ::-“"'""' Bt~
net-centric environment " "1

176

Web Services Architecture Intelligent Framework

[al

-]

3

"]

c

a3

i A u att

- Application
Architecture)

Business

process

Business
service

bus

?V???

|l»;hx:gcluro

N

N

Japlaod g

rrTYTYY

Component

Architecture

Design and implementation
of web servi T -
web services for T E— —
: eCatalog _
the SAVAGE archive I |
Client e~
|| @ =
L e =
\ { From WSCoreoler |
—
Crwwe
P °“\\\N\\\\K\‘
l‘
;amfl- | : DESWe | sDEsF | ngitten | | - WS |[coe _,~””’ /f \
I N0GeStateay DESGetSuateay
| | [FromiSCorerter| [Foim WSl } [FramiiConaier} {FramnSCamter
Tjﬂﬁzztnisuuq-- T e o
: t - e nan Serg s v i St
i | mocaReOperaion I | - R SETG RS
| scmooe, } e Ot Ntﬂﬁ&;:;;u4 -&Eﬁa:::;m:
: 1 mll Semept Sorg e e S e [np——
At | i Sy vy | e et st Sevg ety | ke o GRS Seg s
I ST prape e b L] e Sy peiSia | bk WSty S)
| | =g | ik Sory gt) D Sy VSR USSR BSLI, PSAT
S g agEe Pt I S A e S5y tNSSege | Pubic VSSngemn pfiSSngetn
vy Srep pefecieniSer | Seegr J i ot eSS WSSegein | | | ok et SSngetr VS
et Hailag<Soeg Sinp Infle | it Sop iy
SIS) Z=s e e pacarCpenman |
N N e o ! s el Node Srwinte |
taBerpars bt tade | ‘P dockean serrCiescopnen| Seeg descpeen |
oy e CEF iy | ks ALy NS |
3o resry nicat
i i " A | I PSR QSO | /
S WSyl | b wad SO WESPpr |
; ; o) —————— e I
= B i SO I

177

« Deployment and test resulis of
i SAVAGE web services

——

Client

b Rl =
DESWSMethod | Savage WS WAR
s

[FramPSCammter|
XIDWSMethod it
orE ST My
i
Bk DE NSy Sy .
putic Sy pempurte |
LE LY [i v setroatit Strrg et
W | i VSUNRy SRR
Lt Sk v WS Bt
S | o WSS S

o] WSSeqgen | | |t ot sYSSopen WSS

ottty | | o e P AT
o

"'/; ‘:!..;s:-v }
| -]
M) JSP Page - Netscape Navigator
File Edit View History Bookmarks Tools Help
a | n [i_j https://savage.nps.edu/SavageWSClientWebAppProdTest/
65 Netscape.com |) Getting Started
| LI JSPPage Q
Welcome to SAVAGE Web Services Test Page
©® findX3DModel
© getX3DModel
© findDESModel
© getDESModel
tank | Invoke Web Service |
Accessing SAVAGE
web services

178

- Sl iy b= e b=t Ty w1
“Commena>
A sleary g Whes siiving Sat eunry has four actrwe semtort (nrl
ik e o the e Mo <f gt of b 5wl
wr
- «Farameter e I g
<Commarnt IS sty D /Comment>
B —
- e mame="resesC e ype=" e AL FaniDiten
= ot
The Saeage Modeing Asadves Lamginge ZMAL) choect st o
[e

operations for models in archives

SAVAGE web services perform
“find” and “get"

O

QO rellF T &

Faraian B abitrion

[0 it i

i 48 o Sy L e B e T U B oy

]

6]

=

DESHSL

oot

T

Composing business processes
using SAVAGE web services
R

akaisa 5l pAXIONMAProcess
Pl gD
et
pl g XIOModdProfle
0 Froces: grapn | Properses |
I.:.J - G'\ ‘\ Q\
= dith @ 1)
] ‘ 6« ‘ p2:findX3DModelProcess
press) / 1
- From To .
= FindMatchDES
— p2retum | p3=addUrd ~
msle
‘ From Te
true |false
| p2arcturn | plaard
p:findDESModelProcess
L]
pliget’3DModelProcess
|
From To ‘I
plretum | phidesUd I

179

S y

pagetDESModelProcess l‘

A,

The Envisioned WSAIF

WSAIF

WSAIF Manager

WSAIF

WSAIF WSAIF WSAIF WSAIF Chnreceraphy WSAIE U

Agent comms Security Matchmaker

: : Other SOA
standards

Meodeling techniques can be used in WSAIF Orchestration and Adaptation
compoenents.

WEAIF seftware agenis, modeling data and supperting sofiware infrastructure can
enable web services integration on the fly

Conclusion

* Web services feasible for modeling, simulation
— X3D Graphics visualization

— Viskit agent-based behaviour models
* Composition of services adds further value

* Thisapproach matches industry best practices
for information architecture

* Self-integration of web services is possible

* Future work: global Web-based simulation,
visualizationdriven by net-centric tactical data

180

LIST OF REFERENCES

Alesso, Smith. Developing Semantic Web Services. A K Peters Ltd, 2004.

Bell, Cesare, Lycett. Semantic Web Services Architecture for Simulation Model Reuse.
IEEE 2007.

Benatallah, Casati, Grigori, Nezhad, Toumani. Developing Adapters for Web Services
Integration. CAISE 2005.

Benatallah, Nezhad. Interoperability in Semantic Web Services. SWSWPC 2004.
Berners-Lee. Weaving the Web. HarperCollins Publishers Inc., 2000.

Brickley, Guha, McBride. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, 2004.

Brutzman and Daly. Extensible 3D Graphics For Web Authors. Morgan Kaufmann
Elsevier Inc., 2007.

Burstein, Bussler, Zaremba, Finin, Huhns, Paolucci, Sheth, Williams. A Semantic Web
Services Architecture, IEEE 2005.

Charfi, Mezini. Aspect-Oriented Web Service Composition with AO4BPEL. 2004.
Childers. Applying Semantic Web Concepts to Support Net-Centric Warfare Using the
Tactical Assessment Markup Language (TAML). Master’s Thesis, Naval

Postgraduate School, Monterey, California, 2006.

Erl. Service-Oriented Architecture (Concepts, Technology, and Design). SOA Systems
Inc, 2005.

Erl. Service-Oriented Architecture (Principles of Service Design). SOA Systems Inc,
2008.

Bruijin, Bussler, Domingue, Fensel, Hepp, Kifer, Koig-Ries, Kopecky, Lara, Oren,
Polleres, Scicluna, Stollberg, Roman, Lausen, Keller. Web Services Modeling
Ontology (WSMO), D2 V/1.2. 2005.

Foo, Wong, Ni, Leong M., Leong H. Developing a Horizon Scanning System for Early
Warning. 12" ICCRTS 2007.

Gamma, Helm, Johnson, Vlissides. Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

181

Carey. XML 2" Edition. Thomson Learning Inc., 2007.
Gorton. Essential Software Architecture. Springer-Verlag Berlin Heidelberg, 2006.

Haller, Cimpian, Mocan, Oren. WSMX — A Semantic Service-Oriented Architecture.
ICWS 2005.

Hammer, Timmerman. Fundamentals of Software Integration. Jones and Bartlett
Publishers Inc., 2008.

Hofmeister, Nord, Soni. Applied Software Architecture. Addison Wesley Longman Inc.,
2000.

K. Harikumar, Lee, Yang, Kim, Kang. A Model for Application Integration using Web
Services. IEEE 2005.

Klyne, Carroll, McBride. Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation, 2004.

Lara, Roman, Polleres, Fensel. A Conceptual Comparison of WSMO and OWL-S.
ECOWS 2004.

Maassen. Applied Java Patterns. Sun Microsystems Inc., 2002.

Martin, Paolucci, mcllraith, Burstein. Bringing Semantics to Web Services: The OWL-S
Approach. SWSWPC 2004.

Martin, Burstein, Hobbs, Lassila, McDermott, Mcllraith, Narayanan, Paolucci, Parsia,
Payne, Payne, Sirin, Srinivasan, Sycara. OWL-S: Semantic Markup for Web
Services. W3C Submission, 2004.

Matthews. Bridging the SOA Divide for Deployed Assets. 2008.

Nagappan, Skoczylas, Sriganesh. Developing Java Web Services. Wiley Publishing Inc.,
2003.

Paschke, Hirtle, Ginsberg, Patranjan, McCabe. 2008. “RIF Use Cases and
Requirements”. W3C Working Draft, 2008.

Rao, Su. A Survey of Automated Web Service Composition Methods. SWSWPC 2004.

Rauch. Savage Modeling Analysis Language (SMAL): Metadata for Tactical Simulations
and X3D Visualizations. 2006.

Sanchez, Acuna, Cavero, Marcos. Towards a UML-Compliant Semantic Web Services
Development.

182

Schruben. Simulation Modeling with Event Graphs. ACM 1983.

Shafig, Ding, Fensel. Bridging Multi Agent Systems and Web Services: towards
interoperability between Software Agents and Semantic Web Services. IEEE
2006.

Skogan, Gronmo, Solheim. Web Service Composition in UML. IEEE 2004.

William. Document-Centric XML Encryption and Authorization for Coalition
Messaging. NPS Thesis Proposal 2008.

Wau, Chang. Comparison of Web Services Architectures Based on Architecture Quality
Properties. IEEE 2005.

Zhang, Arpinar, Aleman-Meza. Automatic Composition of Semantic Web Services.

183

THIS PAGE INTENTIONALLY LEFT BLANK

184

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Don Brutzman
Naval Postgraduate School
Monterey, California

Don McGregor
Naval Postgraduate School
Monterey, California

. Curtis Blais

Naval Postgraduate School
Monterey, California

. Christopher Priebe

G2 Software Systems
SPAWAR Systems Center
San Diego, California

. Tim Faulkuer

TCNI
Middletown, Maryland

185

8. Professor Yeo Tat Soon, Director
Temasek Defence Systems Institute
National University of Singapore
Singapore

9. Tan Lai Poh (Ms), Assistant Manager
Temasek Defence Systems Institute
National University of Singapore
Singapore

186

